
Peter Dalgaard

Introductory Statistics with R

Second Edition

123

1
Basics

The purpose of this chapter is to get you started using R. It is assumed that
you have a working installation of the software and of the ISwR package
that contains the data sets for this book. Instructions for obtaining and
installing the software are given in Appendix A.

The text that follows describes R version 2.6.2. As of this writing, that is
the latest version of R. As far as possible, I present the issues in a way
that is independent of the operating system in use and assume that the
reader has the elementary operational knowledge to select from menus,
move windows around, etc. I do, however, make exceptions where I am
aware of specific difficulties with a particular platform or specific features
of it.

1.1 First steps

This section gives an introduction to the R computing environment and
walks you through its most basic features.

Starting R is straightforward, but the method will depend on your com-
puting platform. You will be able to launch it from a system menu, by
double-clicking an icon, or by entering the command “R” at the system
command line. This will either produce a console window or cause R
to start up as an interactive program in the current terminal window. In

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_1, © Springer Science+Business Media, LLC 2008

2 1. Basics

Figure 1.1. Screen image of R for Windows.

either case, R works fundamentally by the question-and-answer model:
You enter a line with a command and press Enter (←↩). Then the program
does something, prints the result if relevant, and asks for more input.
When R is ready for input, it prints out its prompt, a “>”. It is possi-
ble to use R as a text-only application, and also in batch mode, but for
the purposes of this chapter, I assume that you are sitting at a graphical
workstation.

All the examples in this book should run if you type them in exactly as
printed, provided that you have the ISwR package not only installed but
also loaded into your current search path. This is done by entering

> library(ISwR)

at the command prompt. You do not need to understand what the
command does at this point. It is explained in Section 2.1.5.

For a first impression of what R can do, try typing the following:

> plot(rnorm(1000))

This command draws 1000 numbers at random from the normal distri-
bution (rnorm = random normal) and plots them in a pop-up graphics
window. The result on a Windows machine can be seen in Figure 1.1.

Of course, you are not expected at this point to guess that you would ob-
tain this result in that particular way. The example is chosen because it
shows several components of the user interface in action. Before the style

1.1 First steps 3

of commands will fall naturally, it is necessary to introduce some concepts
and conventions through simpler examples.

Under Windows, the graphics window will have taken the keyboard focus
at this point. Click on the console to make it accept further commands.

1.1.1 An overgrown calculator

One of the simplest possible tasks in R is to enter an arithmetic expression
and receive a result. (The second line is the answer from the machine.)

> 2 + 2
[1] 4

So the machine knows that 2 plus 2 makes 4. Of course, it also knows how
to do other standard calculations. For instance, here is how to compute
e−2 :

> exp(-2)
[1] 0.1353353

The [1] in front of the result is part of R’s way of printing numbers and
vectors. It is not useful here, but it becomes so when the result is a longer
vector. The number in brackets is the index of the first number on that
line. Consider the case of generating 15 random numbers from a normal
distribution:

> rnorm(15)
[1] -0.18326112 -0.59753287 -0.67017905 0.16075723 1.28199575
[6] 0.07976977 0.13683303 0.77155246 0.85986694 -1.01506772
[11] -0.49448567 0.52433026 1.07732656 1.09748097 -1.09318582

Here, for example, the [6] indicates that 0.07976977 is the sixth element in
the vector. (For typographical reasons, the examples in this book are made
with a shortened line width. If you try it on your own machine, you will
see the values printed with six numbers per line rather than five. The num-
bers themselves will also be different since random number generation is
involved.)

1.1.2 Assignments

Even on a calculator, you will quickly need some way to store intermedi-
ate results, so that you do not have to key them in over and over again.
R, like other computer languages, has symbolic variables, that is names that

4 1. Basics

can be used to represent values. To assign the value 2 to the variable x,
you can enter

> x <- 2

The two characters <- should be read as a single symbol: an arrow point-
ing to the variable to which the value is assigned. This is known as the
assignment operator. Spacing around operators is generally disregarded
by R, but notice that adding a space in the middle of a <- changes the
meaning to “less than” followed by “minus” (conversely, omitting the
space when comparing a variable to a negative number has unexpected
consequences!).

There is no immediately visible result, but from now on, x has the value 2
and can be used in subsequent arithmetic expressions.

> x
[1] 2
> x + x
[1] 4

Names of variables can be chosen quite freely in R. They can be built from
letters, digits, and the period (dot) symbol. There is, however, the limita-
tion that the name must not start with a digit or a period followed by a
digit. Names that start with a period are special and should be avoided.
A typical variable name could be height.1yr, which might be used to
describe the height of a child at the age of 1 year. Names are case-sensitive:
WT and wt do not refer to the same variable.

Some names are already used by the system. This can cause some con-
fusion if you use them for other purposes. The worst cases are the
single-letter names c, q, t, C, D, F, I, and T, but there are also diff, df,
and pt, for example. Most of these are functions and do not usually cause
trouble when used as variable names. However, F and T are the standard
abbreviations for FALSE and TRUE and no longer work as such if you
redefine them.

1.1.3 Vectorized arithmetic

You cannot do much statistics on single numbers! Rather, you will look at
data from a group of patients, for example. One strength of R is that it can
handle entire data vectors as single objects. A data vector is simply an array
of numbers, and a vector variable can be constructed like this:

> weight <- c(60, 72, 57, 90, 95, 72)
> weight
[1] 60 72 57 90 95 72

1.1 First steps 5

The construct c(...) is used to define vectors. The numbers are made
up but might represent the weights (in kg) of a group of normal men.

This is neither the only way to enter data vectors into R nor is it gen-
erally the preferred method, but short vectors are used for many other
purposes, and the c(...) construct is used extensively. In Section 2.4,
we discuss alternative techniques for reading data. For now, we stick to a
single method.

You can do calculations with vectors just like ordinary numbers, as long
as they are of the same length. Suppose that we also have the heights that
correspond to the weights above. The body mass index (BMI) is defined
for each person as the weight in kilograms divided by the square of the
height in meters. This could be calculated as follows:

> height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91)
> bmi <- weight/height^2
> bmi
[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630

Notice that the operation is carried out elementwise (that is, the first value
of bmi is 60/1.752 and so forth) and that the ^ operator is used for raising
a value to a power. (On some keyboards, ^ is a “dead key” and you will
have to press the spacebar afterwards to make it show.)

It is in fact possible to perform arithmetic operations on vectors of differ-
ent length. We already used that when we calculated the height^2 part
above since 2 has length 1. In such cases, the shorter vector is recycled.
This is mostly used with vectors of length 1 (scalars) but sometimes also
in other cases where a repeating pattern is desired. A warning is issued if
the longer vector is not a multiple of the shorter in length.

These conventions for vectorized calculations make it very easy to specify
typical statistical calculations. Consider, for instance, the calculation of the
mean and standard deviation of the weight variable.

First, calculate the mean, x̄ = ∑ xi/n:

> sum(weight)
[1] 446
> sum(weight)/length(weight)
[1] 74.33333

Then save the mean in a variable xbar and proceed with the calculation
of SD =

√
(∑(xi − x̄)2)/(n− 1). We do this in steps to see the individual

components. The deviations from the mean are

> xbar <- sum(weight)/length(weight)
> weight - xbar

6 1. Basics

[1] -14.333333 -2.333333 -17.333333 15.666667 20.666667
[6] -2.333333

Notice how xbar, which has length 1, is recycled and subtracted from
each element of weight. The squared deviations will be

> (weight - xbar)^2
[1] 205.444444 5.444444 300.444444 245.444444 427.111111
[6] 5.444444

Since this command is quite similar to the one before it, it is convenient
to enter it by editing the previous command. On most systems running R,
the previous command can be recalled with the up-arrow key.

The sum of squared deviations is similarly obtained with

> sum((weight - xbar)^2)
[1] 1189.333

and all in all the standard deviation becomes

> sqrt(sum((weight - xbar)^2)/(length(weight) - 1))
[1] 15.42293

Of course, since R is a statistical program, such calculations are already
built into the program, and you get the same results just by entering

> mean(weight)
[1] 74.33333
> sd(weight)
[1] 15.42293

1.1.4 Standard procedures

As a slightly more complicated example of what R can do, consider the
following: The rule of thumb is that the BMI for a normal-weight indi-
vidual should be between 20 and 25, and we want to know if our data
deviate systematically from that. You might use a one-sample t test to as-
sess whether the six persons’ BMI can be assumed to have mean 22.5 given
that they come from a normal distribution. To this end, you can use the
function t.test. (You might not know the theory of the t test yet. The
example is included here mainly to give some indication of what “real”
statistical output looks like. A thorough description of t.test is given in
Chapter 5.)

1.1 First steps 7

> t.test(bmi, mu=22.5)
One Sample t-test

data: bmi
t = 0.3449, df = 5, p-value = 0.7442
alternative hypothesis: true mean is not equal to 22.5
95 percent confidence interval:
18.41734 27.84791
sample estimates:
mean of x
23.13262

The argument mu=22.5 attaches a value to the formal argument mu,
which represents the Greek letter µ conventionally used for the theoret-
ical mean. If this is not given, t.test would use the default mu=0, which
is not of interest here.

For a test like this, we get a more extensive printout than in the earlier
examples. The details of the output are explained in Chapter 5, but you
might focus on the p-value which is used for testing the hypothesis that
the mean is 22.5. The p-value is not small, indicating that it is not at all un-
likely to get data like those observed if the mean were in fact 22.5. (Loosely
speaking; actually p is the probability of obtaining a t value bigger than
0.3449 or less than−0.3449.) However, you might also look at the 95% con-
fidence interval for the true mean. This interval is quite wide, indicating
that we really have very little information about the true mean.

1.1.5 Graphics

One of the most important aspects of the presentation and analysis of data
is the generation of proper graphics. R — like S before it — has a model
for constructing plots that allows simple production of standard plots as
well as fine control over the graphical components.

If you want to investigate the relation between weight and height, the
first idea is to plot one versus the other. This is done by

> plot(height,weight)

leading to Figure 1.2.

You will often want to modify the drawing in various ways. To that end,
there are a wealth of plotting parameters that you can set. As an example,
let us try changing the plotting symbol using the keyword pch (“plotting
character”) like this:

> plot(height, weight, pch=2)

8 1. Basics

1.65 1.70 1.75 1.80 1.85 1.90

60
70

80
90

height

w
ei

gh
t

Figure 1.2. A simple x–y plot.

This gives the plot in Figure 1.3, with the points now marked with little
triangles.

The idea behind the BMI calculation is that this value should be inde-
pendent of the person’s height, thus giving you a single number as an
indication of whether someone is overweight and by how much. Since
a normal BMI should be about 22.5, you would expect that weight ≈
22.5 × height2. Accordingly, you can superimpose a curve of expected
weights at BMI 22.5 on the figure:

> hh <- c(1.65, 1.70, 1.75, 1.80, 1.85, 1.90)
> lines(hh, 22.5 * hh^2)

yielding Figure 1.4. The function lines will add (x, y) values joined by
straight lines to an existing plot.

The reason for defining a new variable (hh) with heights rather than using
the original height vector is twofold. First, the relation between height
and weight is a quadratic one and hence nonlinear, although it can be diffi-
cult to see on the plot. Since we are approximating a nonlinear curve with
a piecewise linear one, it will be better to use points that are spread evenly
along the x-axis than to rely on the distribution of the original data. Sec-

1.2 R language essentials 9

ond, since the values of height are not sorted, the line segments would
not connect neighbouring points but would run back and forth between
distant points.

1.2 R language essentials

This section outlines the basic aspects of the R language. It is necessary
to do this in a slightly superficial manner, with some of the finer points
glossed over. The emphasis is on items that are useful to know in interac-
tive usage as opposed to actual programming, although a brief section on
programming is included.

1.2.1 Expressions and objects

The basic interaction mode in R is one of expression evaluation. The user
enters an expression; the system evaluates it and prints the result. Some
expressions are evaluated not for their result but for side effects such as

1.65 1.70 1.75 1.80 1.85 1.90

60
70

80
90

height

w
ei

gh
t

Figure 1.3. Plot with pch = 2.

10 1. Basics

1.65 1.70 1.75 1.80 1.85 1.90

60
70

80
90

height

w
ei

gh
t

Figure 1.4. Superimposed reference curve, using lines(...).

putting up a graphics window or writing to a file. All R expressions return
a value (possibly NULL), but sometimes it is “invisible” and not printed.

Expressions typically involve variable references, operators such as +, and
function calls, as well as some other items that have not been introduced
yet.

Expressions work on objects. This is an abstract term for anything that can
be assigned to a variable. R contains several different types of objects. So
far, we have almost exclusively seen numeric vectors, but several other
types are introduced in this chapter.

Although objects can be discussed abstractly, it would make a rather bor-
ing read without some indication of how to generate them and what to do
with them. Conversely, much of the expression syntax makes little sense
without knowledge of the objects on which it is intended to work. There-
fore, the subsequent sections alternate between introducing new objects
and introducing new language elements.

1.2 R language essentials 11

1.2.2 Functions and arguments

At this point, you have obtained an impression of the way R works, and
we have already used some of the special terminology when talking about
the plot function, etc. That is exactly the point: Many things in R are done
using function calls, commands that look like an application of a math-
ematical function of one or several variables; for example, log(x) or
plot(height, weight).

The format is that a function name is followed by a set of parentheses con-
taining one or more arguments. For instance, in plot(height,weight)
the function name is plot and the arguments are height and weight.
These are the actual arguments, which apply only to the current call. A func-
tion also has formal arguments, which get connected to actual arguments in
the call.

When you write plot(height, weight), R assumes that the first argu-
ment corresponds to the x-variable and the second one to the y-variable.
This is known as positional matching. This becomes unwieldy if a func-
tion has a large number of arguments since you have to supply every
one of them and remember their position in the sequence. Fortunately,
R has methods to avoid this: Most arguments have sensible defaults and
can be omitted in the standard cases, and there are nonpositional ways of
specifying them when you need to depart from the default settings.

The plot function is in fact an example of a function that has a large
selection of arguments in order to be able to modify symbols, line
widths, titles, axis type, and so forth. We used the alternative form of
specifying arguments when setting the plot symbol to triangles with
plot(height, weight, pch=2).

The pch=2 form is known as a named actual argument, whose name can
be matched against the formal arguments of the function and thereby
allow keyword matching of arguments. The keyword pch was used to
say that the argument is a specification of the plotting character. This
type of function argument can be specified in arbitrary order. Thus, you
can write plot(y=weight,x=height) and get the same plot as with
plot(x=height,y=weight).

The two kinds of argument specification — positional and named — can
be mixed in the same call.

Even if there are no arguments to a function call, you have to write, for
example, ls() for displaying the contents of the workspace. A common
error is to leave off the parentheses, which instead results in the display of
a piece of R code since ls entered by itself indicates that you want to see
the definition of the function rather than execute it.

12 1. Basics

The formal arguments of a function are part of the function definition. The
set of formal arguments to a function, for instance plot.default (which
is the function that gets called when you pass plot an x argument for
which no special plot method exists), may be seen with

> args(plot.default)
function (x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)

Notice that most of the arguments have defaults, meaning that if you do
not specify (say) the type argument, the function will behave as if you
had passed type="p". The NULL defaults for many of the arguments re-
ally serve as indicators that the argument is unspecified, allowing special
behaviour to be defined inside the function. For instance, if they are not
specified, the xlab and ylab arguments are constructed from the actual
arguments passed as x and y. (There are some very fine points associated
with this, but we do not go further into the topic.)

The triple-dot (...) argument indicates that this function will accept
additional arguments of unspecified name and number. These are of-
ten meant to be passed on to other functions, although some functions
treat it specially. For instance, in data.frame and c, the names of the
...-arguments become the names of the elements of the result.

1.2.3 Vectors

We have already seen numeric vectors. There are two further types,
character vectors and logical vectors.

A character vector is a vector of text strings, whose elements are specified
and printed in quotes:

> c("Huey","Dewey","Louie")
[1] "Huey" "Dewey" "Louie"

It does not matter whether you use single- or double-quote symbols, as
long as the left quote is the same as the right quote:

> c(’Huey’,’Dewey’,’Louie’)
[1] "Huey" "Dewey" "Louie"

However, you should avoid the acute accent key (´), which is present on
some keyboards. Double quotes are used throughout this book to prevent
mistakes. Logical vectors can take the value TRUE or FALSE (or NA; see
below). In input, you may use the convenient abbreviations T and F (if you

1.2 R language essentials 13

are careful not to redefine them). Logical vectors are constructed using the
c function just like the other vector types:

> c(T,T,F,T)
[1] TRUE TRUE FALSE TRUE

Actually, you will not often have to specify logical vectors in the manner
above. It is much more common to use single logical values to turn an
option on or off in a function call. Vectors of more than one value most
often result from relational expressions:

> bmi > 25
[1] FALSE FALSE FALSE FALSE TRUE FALSE

We return to relational expressions and logical operations in the context
of conditional selection in Section 1.2.12.

1.2.4 Quoting and escape sequences

Quoted character strings require some special considerations: How, for
instance, do you put a quote symbol inside a string? And what about spe-
cial characters such as newlines? This is done using escape sequences. We
shall look at those in a moment, but first it will be useful to observe the
following.

There is a distinction between a text string and the way it is printed. When,
for instance, you give the string "Huey", it is a string of four characters,
not six. The quotes are not actually part of the string, they are just there
so that the system can tell the difference between a string and a variable
name.

If you print a character vector, it usually comes out with quotes added to
each element. There is a way to avoid this, namely to use the cat function.
For instance,

> cat(c("Huey","Dewey","Louie"))
Huey Dewey Louie>

This prints the strings without quotes, just separated by a space character.
There is no newline following the string, so the prompt (>) for the next
line of input follows directly at the end of the line. (Notice that when the
character vector is printed by cat there is no way of telling the difference
from the single string "Huey Dewey Louie".)

To get the system prompt onto the next line, you must include a newline
character

14 1. Basics

> cat("Huey","Dewey","Louie", "\n")
Huey Dewey Louie
>

Here, \n is an example of an escape sequence. It actually represents a sin-
gle character, the linefeed (LF), but is represented as two. The backslash
(\) is known as the escape character. In a similar vein, you can insert quote
characters with \", as in

> cat("What is \"R\"?\n")
What is "R"?

There are also ways to insert other control characters and special glyphs,
but it would lead us too far astray to discuss it in full detail. One impor-
tant thing, though: What about the escape character itself? This, too, must
be escaped, so to put a backslash in a string, you must double it. This
is important to know when specifying file paths on Windows, see also
Section 2.4.1.

1.2.5 Missing values

In practical data analysis, a data point is frequently unavailable (the pa-
tient did not show up, an experiment failed, etc.). Statistical software
needs ways to deal with this. R allows vectors to contain a special NA
value. This value is carried through in computations so that operations on
NA yield NA as the result. There are some special issues associated with the
handling of missing values; we deal with them as we encounter them (see
“missing values” in the index).

1.2.6 Functions that create vectors

Here we introduce three functions, c, seq, and rep, that are used to create
vectors in various situations.

The first of these, c, has already been introduced. It is short for “con-
catenate”, joining items end to end, which is exactly what the function
does:

> c(42,57,12,39,1,3,4)
[1] 42 57 12 39 1 3 4

You can also concatenate vectors of more than one element as in

> x <- c(1, 2, 3)
> y <- c(10, 20)

1.2 R language essentials 15

> c(x, y, 5)
[1] 1 2 3 10 20 5

However, you do not need to use c to create vectors of length 1. People
sometimes type, for example, c(1), but it is the same as plain 1.

It is also possible to assign names to the elements. This modifies the way
the vector is printed and is often used for display purposes.

> x <- c(red="Huey", blue="Dewey", green="Louie")
> x

red blue green
"Huey" "Dewey" "Louie"

(In this case, it does of course make sense to use c even for single-element
vectors.)

The names can be extracted or set using names:

> names(x)
[1] "red" "blue" "green"

All elements of a vector have the same type. If you concatenate vectors of
different types, they will be converted to the least “restrictive” type:

> c(FALSE, 3)
[1] 0 3
> c(pi, "abc")
[1] "3.14159265358979" "abc"
> c(FALSE, "abc")
[1] "FALSE" "abc"

That is, logical values may be converted to 0/1 or "FALSE"/"TRUE" and
numbers converted to their printed representations.

The second function, seq (“sequence”), is used for equidistant series of
numbers. Writing

> seq(4,9)
[1] 4 5 6 7 8 9

yields, as shown, the integers from 4 to 9. If you want a sequence in jumps
of 2, write

> seq(4,10,2)
[1] 4 6 8 10

This kind of vector is frequently needed, particularly for graphics. For ex-
ample, we previously used c(1.65,1.70,1.75,1.80,1.85,1.90) to
define the x-coordinates for a curve, something that could also have been

16 1. Basics

written seq(1.65,1.90,0.05) (the advantage of using seqmight have
been more obvious if the heights had been in steps of 1 cm rather than
5 cm!).

The case with step size equal to 1 can also be written using a special
syntax:

> 4:9
[1] 4 5 6 7 8 9

The above is exactly the same as seq(4,9), only easier to read.

The third function, rep (“replicate”), is used to generate repeated values.
It is used in two variants, depending on whether the second argument is
a vector or a single number:

> oops <- c(7,9,13)
> rep(oops,3)
[1] 7 9 13 7 9 13 7 9 13
> rep(oops,1:3)
[1] 7 9 9 13 13 13

The first of the function calls above repeats the entire vector oops three
times. The second call has the number 3 replaced by a vector with the
three values (1, 2, 3); these values correspond to the elements of the oops
vector, indicating that 7 should be repeated once, 9 twice, and 13 three
times. The rep function is often used for things such as group codes: If it
is known that the first 10 observations are men and the last 15 are women,
you can use

> rep(1:2,c(10,15))
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

to form a vector that for each observation indicates whether it is from a
man or a woman.

The special case where there are equally many replications of each value
can be obtained using the each argument. E.g., rep(1:2,each=10) is
the same as rep(1:2,c(10,10)).

1.2.7 Matrices and arrays

A matrix in mathematics is just a two-dimensional array of numbers. Ma-
trices are used for many purposes in theoretical and practical statistics,
but it is not assumed that the reader is familiar with matrix algebra,
so many special operations on matrices, including matrix multiplication,
are skipped. (The document “An Introduction to R”, which comes with

1.2 R language essentials 17

the installation, outlines these items quite well.) However, matrices and
also higher-dimensional arrays do get used for simpler purposes as well,
mainly to hold tables, so an elementary description is in order.

In R, the matrix notion is extended to elements of any type, so you could
have, for instance, a matrix of character strings. Matrices and arrays are
represented as vectors with dimensions:

> x <- 1:12
> dim(x) <- c(3,4)
> x

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The dim assignment function sets or changes the dimension attribute of x,
causing R to treat the vector of 12 numbers as a 3× 4 matrix. Notice that
the storage is column-major; that is, the elements of the first column are
followed by those of the second, etc.

A convenient way to create matrices is to use the matrix function:

> matrix(1:12,nrow=3,byrow=T)
[,1] [,2] [,3] [,4]

[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Notice how the byrow=T switch causes the matrix to be filled in a rowwise
fashion rather than columnwise.

Useful functions that operate on matrices include rownames, colnames,
and the transposition function t (notice the lowercase t as opposed to
uppercase T for TRUE), which turns rows into columns and vice versa:

> x <- matrix(1:12,nrow=3,byrow=T)
> rownames(x) <- LETTERS[1:3]
> x
[,1] [,2] [,3] [,4]

A 1 2 3 4
B 5 6 7 8
C 9 10 11 12
> t(x)

A B C
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

18 1. Basics

The character vector LETTERS is a built-in variable that contains the cap-
ital letters A–Z. Similar useful vectors are letters, month.name, and
month.abb with lowercase letters, month names, and abbreviated month
names.

You can “glue” vectors together, columnwise or rowwise, using the cbind
and rbind functions.

> cbind(A=1:4,B=5:8,C=9:12)
A B C

[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
> rbind(A=1:4,B=5:8,C=9:12)
[,1] [,2] [,3] [,4]

A 1 2 3 4
B 5 6 7 8
C 9 10 11 12

We return to table operations in Section 4.5, which discusses tabulation of
variables in a data set.

1.2.8 Factors

It is common in statistical data to have categorical variables, indicating
some subdivision of data, such as social class, primary diagnosis, tu-
mor stage, Tanner stage of puberty, etc. Typically, these are input using
a numeric code.

Such variables should be specified as factors in R. This is a data structure
that (among other things) makes it possible to assign meaningful names
to the categories.

There are analyses where it is essential for R to be able to distinguish
between categorical codes and variables whose values have a direct
numerical meaning (see Chapter 7).

The terminology is that a factor has a set of levels — say four levels for con-
creteness. Internally, a four-level factor consists of two items: (a) a vector of
integers between 1 and 4 and (b) a character vector of length 4 containing
strings describing what the four levels are. Let us look at an example:

> pain <- c(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3)
> levels(fpain) <- c("none","mild","medium","severe")

1.2 R language essentials 19

The first command creates a numeric vector pain, encoding the pain lev-
els of five patients. We wish to treat this as a categorical variable, so we
create a factor fpain from it using the function factor. This is called
with one argument in addition to pain, namely levels=0:3, which in-
dicates that the input coding uses the values 0–3. The latter can in principle
be left out since R by default uses the values in pain, suitably sorted, but
it is a good habit to retain it; see below. The effect of the final line is that
the level names are changed to the four specified character strings.

The result should be apparent from the following:

> fpain
[1] none severe medium medium mild
Levels: none mild medium severe
> as.numeric(fpain)
[1] 1 4 3 3 2
> levels(fpain)
[1] "none" "mild" "medium" "severe"

The function as.numeric extracts the numerical coding as numbers
1–4 and levels extracts the names of the levels. Notice that the origi-
nal input coding in terms of numbers 0–3 has disappeared; the internal
representation of a factor always uses numbers starting at 1.

R also allows you to create a special kind of factor in which the lev-
els are ordered. This is done using the ordered function, which works
similarly to factor. These are potentially useful in that they distinguish
nominal and ordinal variables from each other (and arguably text.pain
above ought to have been an ordered factor). Unfortunately, R defaults
to treating the levels as if they were equidistant in the modelling code (by
generating polynomial contrasts), so it may be better to ignore ordered
factors at this stage.

1.2.9 Lists

It is sometimes useful to combine a collection of objects into a larger
composite object. This can be done using lists.

You can construct a list from its components with the function list.

As an example, consider a set of data from Altman (1991, p. 183) concern-
ing pre- and postmenstrual energy intake in a group of women. We can
place these data in two vectors as follows:

> intake.pre <- c(5260,5470,5640,6180,6390,
+ 6515,6805,7515,7515,8230,8770)
> intake.post <- c(3910,4220,3885,5160,5645,
+ 4680,5265,5975,6790,6900,7335)

20 1. Basics

Notice how input lines can be broken and continue on the next line. If
you press the Enter key while an expression is syntactically incomplete, R
will assume that the expression continues on the next line and will change
its normal > prompt to the continuation prompt +. This often happens in-
advertently due to a forgotten parenthesis or a similar problem; in such
cases, either complete the expression on the next line or press ESC (Win-
dows and Macintosh) or Ctrl-C (Unix). The “Stop” button can also be used
under Windows.

To combine these individual vectors into a list, you can say

> mylist <- list(before=intake.pre,after=intake.post)
> mylist
$before
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

$after
[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335

The components of the list are named according to the argument names
used in list. Named components may be extracted like this:

> mylist$before
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

Many of R’s built-in functions compute more than a single vector of values
and return their results in the form of a list.

1.2.10 Data frames

A data frame corresponds to what other statistical packages call a “data
matrix” or a “data set”. It is a list of vectors and/or factors of the same
length that are related “across” such that data in the same position come
from the same experimental unit (subject, animal, etc.). In addition, it has
a unique set of row names.

You can create data frames from preexisting variables:

> d <- data.frame(intake.pre,intake.post)
> d

intake.pre intake.post
1 5260 3910
2 5470 4220
3 5640 3885
4 6180 5160
5 6390 5645
6 6515 4680
7 6805 5265

1.2 R language essentials 21

8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Notice that these data are paired, that is, the same woman has an intake
of 5260 kJ premenstrually and 3910 kJ postmenstrually.

As with lists, components (i.e., individual variables) can be accessed using
the $ notation:

> d$intake.pre
[1] 5260 5470 5640 6180 6390 6515 6805 7515 7515 8230 8770

1.2.11 Indexing

If you need a particular element in a vector, for instance the premenstrual
energy intake for woman no. 5, you can do

> intake.pre[5]
[1] 6390

The brackets are used for selection of data, also known as indexing or sub-
setting. This also works on the left-hand side of an assignment (so that you
can say, for instance, intake.pre[5] <- 6390) if you want to modify
elements of a vector.

If you want a subvector consisting of data for more than one woman, for
instance nos. 3, 5, and 7, you can index with a vector:

> intake.pre[c(3,5,7)]
[1] 5640 6390 6805

Note that it is necessary to use the c(...)-construction to define the vec-
tor consisting of the three numbers 3, 5, and 7. intake.pre[3,5,7]
would mean something completely different. It would specify indexing
into a three-dimensional array.

Of course, indexing with a vector also works if the index vector is stored
in a variable. This is useful when you need to index several variables in
the same way.

> v <- c(3,5,7)
> intake.pre[v]
[1] 5640 6390 6805

It is also worth noting that to get a sequence of elements, for instance the
first five, you can use the a:b notation:

22 1. Basics

> intake.pre[1:5]
[1] 5260 5470 5640 6180 6390

A neat feature of R is the possibility of negative indexing. You can get all
observations except nos. 3, 5, and 7 by writing

> intake.pre[-c(3,5,7)]
[1] 5260 5470 6180 6515 7515 7515 8230 8770

It is not possible to mix positive and negative indices. That would be
highly ambiguous.

1.2.12 Conditional selection

We saw in Section 1.2.11 how to extract data using one or several indices.
In practice, you often need to extract data that satisfy certain criteria, such
as data from the males or the prepubertal or those with chronic diseases,
etc. This can be done simply by inserting a relational expression instead
of the index,

> intake.post[intake.pre > 7000]
[1] 5975 6790 6900 7335

yielding the postmenstrual energy intake for the four women who had an
energy intake above 7000 kJ premenstrually.

Of course, this kind of expression makes sense only if the variables that go
into the relational expression have the same length as the variable being
indexed.

The comparison operators available are < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to), and !=
(not equal to). Notice that a double equal sign is used for testing equality.
This is to avoid confusion with the = symbol used to match keywords with
function arguments. Also, the != operator is new to some; the ! symbol
indicates negation. The same operators are used in the C programming
language.

To combine several expressions, you can use the logical operators & (log-
ical “and”), | (logical “or”), and ! (logical “not”). For instance, we find
the postmenstrual intake for women with a premenstrual intake between
7000 and 8000 kJ with

> intake.post[intake.pre > 7000 & intake.pre <= 8000]
[1] 5975 6790

1.2 R language essentials 23

There are also && and ||, which are used for flow control in R
programming. However, their use is beyond what we discuss here.

It may be worth taking a closer look at what actually happens when you
use a logical expression as an index. The result of the logical expression is
a logical vector as described in Section 1.2.3:

> intake.pre > 7000 & intake.pre <= 8000
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[11] FALSE

Indexing with a logical vector implies that you pick out the values where
the logical vector is TRUE, so in the preceding example we got the 8th and
9th values in intake.post.

If missing values (NA; see Section 1.2.5) appear in an indexing vector, then
R will create the corresponding elements in the result but set the values to
NA.

In addition to the relational and logical operators, there are a series of
functions that return a logical value. A particularly important one is
is.na(x), which is used to find out which elements of x are recorded
as missing (NA).

Notice that there is a real need for is.na because you cannot make
comparisons of the form x==NA. That simply gives NA as the result for
any value of x. The result of a comparison with an unknown value is
unknown!

1.2.13 Indexing of data frames

We have already seen how it is possible to extract variables from a
data frame by typing, for example, d$intake.post. However, it is also
possible to use a notation that uses the matrix-like structure directly:

> d <- data.frame(intake.pre,intake.post)
> d[5,1]
[1] 6390

gives fifth row, first column (that is, the “pre” measurement for woman
no. 5), and

> d[5,]
intake.pre intake.post

5 6390 5645

gives all measurements for woman no. 5. Notice that the comma in d[5,]
is required; without the comma, for example d[2], you get the data frame

24 1. Basics

consisting of the second column of d (that is, more like d[,2], which is the
column itself).

Other indexing techniques also apply. In particular, it can be useful to ex-
tract all data for cases that satisfy some criterion, such as women with a
premenstrual intake above 7000 kJ:

> d[d$intake.pre>7000,]
intake.pre intake.post

8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

Here we extracted the rows of the data frame where intake.pre>7000.
Notice that the row names are those of the original data frame.

If you want to understand the details of this, it may be a little easier if it is
divided into smaller steps. It could also have been done like this:

> sel <- d$intake.pre>7000
> sel
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[11] TRUE
> d[sel,]

intake.pre intake.post
8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

What happens is that sel (select) becomes a logical vector with the value
TRUE for to the four women consuming more than 7000 kJ premenstrually.
Indexing as d[sel,] yields data from the rows where sel is TRUE and
from all columns because of the empty field after the comma.

It is often convenient to look at the first few cases in a data set. This can be
done with indexing, like this:

> d[1:2,]
intake.pre intake.post

1 5260 3910
2 5470 4220

This is such a frequent occurrence that a convenience function called head
exists. By default, it shows the first six lines.

> head(d)
intake.pre intake.post

1 5260 3910
2 5470 4220

1.2 R language essentials 25

3 5640 3885
4 6180 5160
5 6390 5645
6 6515 4680

Similarly, tail shows the last part.

1.2.14 Grouped data and data frames

The natural way of storing grouped data in a data frame is to have the data
themselves in one vector and parallel to that have a factor telling which
data are from which group. Consider, for instance, the following data set
on energy expenditure for lean and obese women.

> energy
expend stature

1 9.21 obese
2 7.53 lean
3 7.48 lean
4 8.08 lean
5 8.09 lean
6 10.15 lean
7 8.40 lean
8 10.88 lean
9 6.13 lean
10 7.90 lean
11 11.51 obese
12 12.79 obese
13 7.05 lean
14 11.85 obese
15 9.97 obese
16 7.48 lean
17 8.79 obese
18 9.69 obese
19 9.68 obese
20 7.58 lean
21 9.19 obese
22 8.11 lean

This is a convenient format since it generalizes easily to data classified
by multiple criteria. However, sometimes it is desirable to have data in a
separate vector for each group. Fortunately, it is easy to extract these from
the data frame:

> exp.lean <- energy$expend[energy$stature=="lean"]
> exp.obese <- energy$expend[energy$stature=="obese"]

Alternatively, you can use the split function, which generates a list of
vectors according to a grouping.

26 1. Basics

> l <- split(energy$expend, energy$stature)
> l
$lean
[1] 7.53 7.48 8.08 8.09 10.15 8.40 10.88 6.13 7.90 7.05
[11] 7.48 7.58 8.11

$obese
[1] 9.21 11.51 12.79 11.85 9.97 8.79 9.69 9.68 9.19

1.2.15 Implicit loops

The looping constructs of R are described in Section 2.3.1. For the purposes
of this book, you can largely ignore their existence. However, there is a
group of R functions that it will be useful for you to know about.

A common application of loops is to apply a function to each element of
a set of values or vectors and collect the results in a single structure. In
R this is abstracted by the functions lapply and sapply. The former
always returns a list (hence the ‘l’), whereas the latter tries to simplify
(hence the ‘s’) the result to a vector or a matrix if possible. So, to compute
the mean of each variable in a data frame of numeric vectors, you can do
the following:

> lapply(thuesen, mean, na.rm=T)
$blood.glucose
[1] 10.3

$short.velocity
[1] 1.325652

> sapply(thuesen, mean, na.rm=T)
blood.glucose short.velocity

10.300000 1.325652

Notice how both forms attach meaningful names to the result, which
is another good reason to prefer to use these functions rather than ex-
plicit loops. The second argument to lapply/sapply is the function that
should be applied, here mean. Any further arguments are passed on to the
function; in this case we pass na.rm=T to request that missing values be
removed (see Section 4.1).

Sometimes you just want to repeat something a number of times but still
collect the results as a vector. Obviously, this makes sense only when the
repeated computations actually give different results, the common case
being simulation studies. This can be done using sapply, but there is a
simplified version called replicate, in which you just have to give a
count and the expression to evaluate:

1.2 R language essentials 27

> replicate(10,mean(rexp(20)))
[1] 1.0677019 1.2166898 0.8923216 1.1281207 0.9636017 0.8406877
[7] 1.3357814 0.8249408 0.9488707 0.5724575

A similar function, apply, allows you to apply a function to the rows
or columns of a matrix (or over indices of a multidimensional array in
general) as in

> m <- matrix(rnorm(12),4)
> m

[,1] [,2] [,3]
[1,] -2.5710730 0.2524470 -0.16886795
[2,] 0.5509498 1.5430648 0.05359794
[3,] 2.4002722 0.1624704 -1.23407417
[4,] 1.4791103 0.9484525 -0.84670929
> apply(m, 2, min)
[1] -2.5710730 0.1624704 -1.2340742

The second argument is the index (or vector of indices) that defines what
the function is applied to; in this case we get the columnwise minima.

Also, the function tapply allows you to create tables (hence the ‘t’) of the
value of a function on subgroups defined by its second argument, which
can be a factor or a list of factors. In the latter case a cross-classified table
is generated. (The grouping can also be defined by ordinary vectors. They
will be converted to factors internally.)

> tapply(energy$expend, energy$stature, median)
lean obese
7.90 9.69

1.2.16 Sorting

It is trivial to sort a vector. Just use the sort function. (We use the built-
in data set intake here; it contains the same data that were used in
Section 1.2.9.)

> intake$post
[1] 3910 4220 3885 5160 5645 4680 5265 5975 6790 6900 7335
> sort(intake$post)
[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335

(intake$pre could not be used for this example since it is sorted
already!)

However, sorting a single vector is not always what is required. Often
you need to sort a series of variables according to the values of some other
variables — blood pressures sorted by sex and age, for instance. For this

28 1. Basics

purpose, there is a construction that may look somewhat abstract at first
but is really very powerful. You first compute an ordering of a variable.

> order(intake$post)
[1] 3 1 2 6 4 7 5 8 9 10 11

The result is the numbers 1 to 11 (or whatever the length of the vec-
tor is), sorted according to the size of the argument to order (here
intake$post). Interpreting the result of order is a bit tricky — it should
be read as follows: You sort intake$post by placing its values in the
order no. 3, no. 1, no. 2, no. 6, etc.

The point is that, by indexing with this vector, other variables can be
sorted by the same criterion. Note that indexing with a vector containing
the numbers from 1 to the number of elements exactly once corresponds
to a reordering of the elements.

> o <- order(intake$post)
> intake$post[o]
[1] 3885 3910 4220 4680 5160 5265 5645 5975 6790 6900 7335
> intake$pre[o]
[1] 5640 5260 5470 6515 6180 6805 6390 7515 7515 8230 8770

What has happened here is that intake$post has been sorted — just as
in sort(intake$post) — while intake$pre has been sorted by the
size of the corresponding intake$post.

It is of course also possible to sort the entire data frame intake

> intake.sorted <- intake[o,]

Sorting by several criteria is done simply by having several arguments to
order; for instance, order(sex,age)will give a main division into men
and women, and within each sex an ordering by age. The second variable
is used when the order cannot be decided from the first variable. Sorting
in reverse order can be handled by, for example, changing the sign of the
variable.

1.3 Exercises

1.1 How would you check whether two vectors are the same if they
may contain missing (NA) values? (Use of the identical function is
considered cheating!)

1.2 If x is a factor with n levels and y is a length n vector, what happens
if you compute y[x]?

1.3 Exercises 29

1.3 Write the logical expression to use to extract girls between 7 and 14
years of age in the juul data set.

1.4 What happens if you change the levels of a factor (with levels) and
give the same value to two or more levels?

1.5 On p. 27, replicate was used to simulate the distribution of the
mean of 20 random numbers from the exponential distribution by re-
peating the operation 10 times. How would you do the same thing with
sapply?

2
The R environment

This chapter collects some practical aspects of working with R. It de-
scribes issues regarding the structure of the workspace, graphical devices
and their parameters, and elementary programming, and includes a fairly
extensive, although far from complete, discussion of data entry.

2.1 Session management

2.1.1 The workspace

All variables created in R are stored in a common workspace. To see which
variables are defined in the workspace, you can use the function ls (list).
It should look as follows if you have run all the examples in the preceding
chapter:

> ls()
[1] "bmi" "d" "exp.lean"
[4] "exp.obese" "fpain" "height"
[7] "hh" "intake.post" "intake.pre"
[10] "intake.sorted" "l" "m"
[13] "mylist" "o" "oops"
[16] "pain" "sel" "v"
[19] "weight" "x" "xbar"
[22] "y"

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_2, © Springer Science+Business Media, LLC 2008

32 2. The R environment

Remember that you cannot omit the parentheses in ls().

If at some point things begin to look messy, you can delete some of the
objects. This is done using rm (remove), so that

> rm(height, weight)

deletes the variables height and weight.

The entire workspace can be cleared using rm(list=ls()) and also via
the “Remove all objects” or “Clear Workspace” menu entries in the Win-
dows and Macintosh GUIs. This does not remove variables whose name
begins with a dot because they are not listed by ls() — you would need
ls(all=T) for that, but it could be dangerous because such names are
used for system purposes.

If you are acquainted with the Unix operating system, for which the S lan-
guage, which preceded R, was originally written, then you will know that
the commands for listing and removing files in Unix are called precisely
ls and rm.

It is possible to save the workspace to a file at any time. If you just write

save.image()

then it will be saved to a file called .RData in your working directory.
The Windows version also has this on the File menu. When you exit R,
you will be asked whether to save the workspace image; if you accept,
the same thing will happen. It is also possible to specify an alternative
filename (within quotes). You can also save selected objects with save.
The .RData file is loaded by default when R is started in its directory.
Other save files can be loaded into your current workspace using load.

2.1.2 Textual output

It is important to note that the workspace consists only of R objects, not of
any of the output that you have generated during a session. If you want
to save your output, use “Save to File” from the File menu in Windows or
use standard cut-and-paste facilities. You can also use ESS (Emacs Speaks
Statistics), which works on all platforms. It is a “mode” for the Emacs
editor where you can run your entire session in an Emacs buffer. You can
get ESS and installation instructions for it from CRAN (see Appendix A).

An alternative way of diverting output to a file is to use the sink func-
tion. This is largely a relic from the days of the 80× 25 computer terminal,
where cut-and-paste techniques were not available, but it can still be use-

2.1 Session management 33

ful at times. In particular, it can be used in batch processing. The way it
works is as follows:

> sink("myfile")
> ls()

No output appears! This is because the output goes into the file myfile in
the current directory. The system will remain in a state where commands
are processed, but the output (apparently) goes into the drain until the
normal state of affairs is reestablished by

> sink()

The current working directory can be obtained by getwd() and changed
by setwd(mydir), where mydir is a character string. The initial working
directory is system-dependent; for instance, the Windows GUI sets it to
the user’s home directory, and command line versions use the directory
from which you start R.

2.1.3 Scripting

Beyond a certain level of complexity, you will not want to work with R on
a line-by-line basis. For instance, if you have entered an 8× 8 matrix over
eight lines and realize that you made a mistake, you will find yourself
using the up-arrow key 64 times to reenter it! In such cases, it is better to
work with R scripts, collections of lines of R code stored either in a file or
in computer memory somehow.

One option is to use the source function, which is sort of the opposite of
sink. It takes the input (i.e., the commands from a file) and runs them.
Notice, though, that the entire file is syntax-checked before anything is
executed. It is often useful to set echo=T in the call so that commands are
printed along with the output.

Another option is more interactive in nature. You can work with a script
editor window, which allows you to submit one or more lines of the script
to a running R, which will then behave as if the same lines had been
entered at the prompt. The Windows and Macintosh versions of R have
simple scripting windows built-in, and a number of text editors also have
features for sending commands to R; popular choices on Windows in-
clude TINN-R and WinEdt. This is also available as part of ESS (see the
preceding section).

The history of commands entered in a session can be saved and reloaded
using the savehistory and loadhistory commands, which are also
mapped to menu entries in Windows. Saved histories can be useful as a

34 2. The R environment

starting point for writing scripts; notice also that the history() function
will show the last commands entered at the console (up to a maximum of
25 lines by default).

2.1.4 Getting help

R can do a lot more than what a typical beginner can be expected to need
or even understand. This book is written so that most of the code you are
likely to need in relation to the statistical procedures is described in the
text, and the compendium in Appendix C is designed to provide a basic
overview. However, it is obviously not possible to cover everything.

R also comes with extensive online help in text form as well as in the form
of a series of HTML files that can be read using a Web browser such as
Netscape or Internet Explorer. The help pages can be accessed via “help”
in the menu bar on Windows and by entering help.start() on any
platform. You will find that the pages are of a technical nature. Preci-
sion and conciseness here take precedence over readability and pedagogy
(something one learns to appreciate after exposure to the opposite).

From the command line, you can always enter help(aggregate) to get
help on the aggregate function or use the prefix form ?aggregate. If
the HTML viewer is running, then the help page is shown there. Other-
wise it is shown as text either through a pager to the terminal window or
in a separate window.

Notice that the HTML version of the help system features a very use-
ful “Search Engine and Keywords” and that the apropos function
allows you to get a list of command names that contain a given pat-
tern. The function help.search is similar but uses fuzzy matching and
searches deeper into the help pages, so that it will be able to locate,
for example, Kendall’s correlation coefficient in cor.test if you use
help.search("kendal").

Also available with the R distributions is a set of documents in various
formats. Of particular interest is “An Introduction to R”, originally based
on a set of notes for S-PLUS by Bill Venables and David Smith and modi-
fied for R by various people. It contains an introduction to the R language
and environment in a rather more language-centric fashion than this book.
On the Windows platform, you can choose to install PDF documents as
part of the installation procedure so that — provided the Adobe Acrobat
Reader program is also installed — it can be accessed via the Help menu.
An HTML version (without pictures) can be accessed via the browser
interface on all platforms.

2.1 Session management 35

2.1.5 Packages

An R installation contains one or more libraries of packages. Some of these
packages are part of the basic installation. Others can be downloaded from
CRAN (see Appendix A), which currently hosts over 1000 packages for
various purposes. You can even create your own packages.

A library is generally just a folder on your disk. A system library is created
when R is installed. In some installations, users may be prohibited from
modifying the system library. It is possible to set up private user libraries;
see help(".Library") for details.

A package can contain functions written in the R language, dynamically
loaded libraries of compiled code (written in C or Fortran mostly), and
data sets. It generally implements functionality that most users will prob-
ably not need to have loaded all the time. A package is loaded into R using
the library command, so to load the survival package you should
enter

> library(survival)

The loaded packages are not considered part of the user workspace. If
you terminate your R session and start a new session with the saved
workspace, then you will have to load the packages again. For the same
reason, it is rarely necessary to remove a package that you have loaded,
but it can be done if desired with

> detach("package:survival")

(see also Section 2.1.7).

2.1.6 Built-in data

Many packages, both inside and outside the standard R distribution, come
with built-in data sets. Such data sets can be rather large, so it is not a
good idea to keep them all in computer memory at all times. A mecha-
nism for on-demand loading is required. In many packages, this works
via a mechanism called lazy loading, which allows the system to “pretend”
that the data are in memory, but in fact they are not loaded until they are
referenced for the first time.

With this mechanism, data are “just there”. For example, if you type “thue-
sen”, the data frame of that name is displayed. Some packages still require
explicit calls to the data function. Most often, this loads a data frame with
the name that its argument specifies; data(thuesen) will, for instance,
load the thuesen data frame.

36 2. The R environment

What data does is to go through the data directories associated with each
package (see Section 2.1.5) and look for files whose basename matches the
given name. Depending on the file extension, several things can then hap-
pen. Files with a .tab extension are read using read.table (Section 2.4),
whereas files with a .R extension are executed as source files (and could,
in general, do anything!), to give two common examples.

If there is a subdirectory of the current directory called data, then it
is searched as well. This can be quite a handy way of organizing your
personal projects.

2.1.7 attach and detach

The notation for accessing variables in data frames gets rather heavy if
you repeatedly have to write longish commands like

plot(thuesen$blood.glucose,thuesen$short.velocity)

Fortunately, you can make R look for objects among the variables in a
given data frame, for example thuesen. You write

> attach(thuesen)

and then thuesen’s data are available without the clumsy $-notation:

> blood.glucose
[1] 15.3 10.8 8.1 19.5 7.2 5.3 9.3 11.1 7.5 12.2 6.7 5.2
[13] 19.0 15.1 6.7 8.6 4.2 10.3 12.5 16.1 13.3 4.9 8.8 9.5

What happens is that the data frame thuesen is placed in the system’s
search path. You can view the search path with search:

> search()
[1] ".GlobalEnv" "thuesen" "package:ISwR"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base"

Notice that thuesen is placed as no. 2 in the search path. .GlobalEnv
is the workspace and package:base is the system library where
all standard functions are defined. Autoloads is not described here.
package:stats and onwards contains the basic statistical routines such
as the Wilcoxon test, and the other packages similarly contain vari-
ous functions and data sets. (The package system is modular, and you
can run R with a minimal set of packages for specific uses.) Finally,
package:ISwR contains the data sets used for this book.

2.1 Session management 37

There may be several objects of the same name in different parts of the
search path. In that case, R chooses the first one (that is, it searches first in
.GlobalEnv, then in thuesen, and so forth). For this reason, you need
to be a little careful with “loose” objects that are defined in the workspace
outside a data frame since they will be used before any vectors and factors
of the same name in an attached data frame. For the same reason, it is not a
good idea to give a data frame the same name as one of the variables inside
it. Note also that changing a data frame after attaching it will not affect the
variables available since attach involves a (virtual) copy operation of the
data frame.

It is not possible to attach data frames in front of .GlobalEnv or fol-
lowing package:base. However, it is possible to attach more than one
data frame. New data frames are inserted into position 2 by default, and
everything except .GlobalEnv moves one step to the right. It is, how-
ever, possible to specify that a data frame should be searched before
.GlobalEnv by using constructions of the form

with(thuesen, plot(blood.glucose, short.velocity))

In some contexts, R uses a slightly different method when looking for ob-
jects. If looking for a variable of a specific type (usually a function), R will
skip those of other types. This is what saves you from the worst conse-
quences of accidentally naming a variable (say) c, even though there is a
system function of the same name.

You can remove a data frame from the search path with detach. If no
arguments are given, the data frame in position 2 is removed, which is
generally what is desired. .GlobalEnv and package:base cannot be
detach’ed.

> detach()
> search()
[1] ".GlobalEnv" "package:ISwR" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

2.1.8 subset, transform, and within

You can attach a data frame to avoid the cumbersome indexing of every
variable inside of it. However, this is less helpful for selecting subsets of
data and for creating new data frames with transformed variables. A cou-
ple of functions exist to make these operations easier. They are used as
follows:

38 2. The R environment

> thue2 <- subset(thuesen,blood.glucose<7)
> thue2

blood.glucose short.velocity
6 5.3 1.49
11 6.7 1.25
12 5.2 1.19
15 6.7 1.52
17 4.2 1.12
22 4.9 1.03
> thue3 <- transform(thuesen,log.gluc=log(blood.glucose))
> thue3

blood.glucose short.velocity log.gluc
1 15.3 1.76 2.727853
2 10.8 1.34 2.379546
3 8.1 1.27 2.091864
4 19.5 1.47 2.970414
5 7.2 1.27 1.974081
...
22 4.9 1.03 1.589235
23 8.8 1.12 2.174752
24 9.5 1.70 2.251292

Notice that the variables used in the expressions for new variables or for
subsetting are evaluated with variables taken from the data frame.

subset also works on single vectors. This is nearly the same as indexing
with a logical vector (such as short.velocity[blood.glucose<7]),
except that observations with missing values in the selection criterion are
excluded.

subset also has a select argument which can be used to extract
variables from the data frame. We shall return to this in Section 10.3.1.

The transform function has a couple of drawbacks, the most serious of
which is probably that it does not allow chained calculations where some
of the new variables depend on the others. The = signs in the syntax are
not assignments, but indicate names, which are assigned to the computed
vectors in the last step.

An alternative to transform is the within function, which can be used
like this:

> thue4 <- within(thuesen,{
+ log.gluc <- log(blood.glucose)
+ m <- mean(log.gluc)
+ centered.log.gluc <- log.gluc - m
+ rm(m)
+ })
> thue4

blood.glucose short.velocity centered.log.gluc log.gluc
1 15.3 1.76 0.481879807 2.727853
2 10.8 1.34 0.133573113 2.379546

2.2 The graphics subsystem 39

3 8.1 1.27 -0.154108960 2.091864
4 19.5 1.47 0.724441444 2.970414
5 7.2 1.27 -0.271891996 1.974081
...
22 4.9 1.03 -0.656737817 1.589235
23 8.8 1.12 -0.071221300 2.174752
24 9.5 1.70 0.005318777 2.251292

Notice that the second argument is an arbitrary expression (here a com-
pound expression, see p. 45). The function is similar to with, but instead
of just returning the computed value, it collects all new and modified
variables into a modified data frame, which is then returned. As shown,
variables containing intermediate results can be discarded with rm. (It is
particularly important to do this if the contents are incompatible with the
data frame.)

2.2 The graphics subsystem

In Section 1.1.5, we saw how to generate a simple plot and superimpose
a curve on it. It is quite common in statistical graphics for you to want to
create a plot that is slightly different from the default: Sometimes you will
want to add annotation, sometimes you want the axes to be different —
labels instead of numbers, irregular placement of tick marks, etc. All these
things can be obtained in R. The methods for doing them may feel slightly
unusual at first, but offers a very flexible and powerful approach.

In this section, we look deeper into the structure of a typical plot and give
some indication of how you can work with plots to achieve your desired
results. Beware, though, that this is a large and complex area and it is not
within the scope of this book to cover it completely. In fact, we completely
ignore important newer tools in the grid and lattice packages.

2.2.1 Plot layout

In the graphics model that R uses, there is (for a single plot) a figure region
containing a central plotting region surrounded by margins. Coordinates
inside the plotting region are specified in data units (the kind generally
used to label the axes). Coordinates in the margins are specified in lines
of text as you move in a direction perpendicular to a side of the plotting
region but in data units as you move along the side. This is useful since
you generally want to put text in the margins of a plot.

A standard x–y plot has an x and a y title label generated from the ex-
pressions being plotted. You may, however, override these labels and also

40 2. The R environment

add two further titles, a main title above the plot and a subtitle at the very
bottom, in the plot call.

> x <- runif(50,0,2)
> y <- runif(50,0,2)
> plot(x, y, main="Main title", sub="subtitle",
+ xlab="x-label", ylab="y-label")

Inside the plotting region, you can place points and lines that are either
specified in the plot call or added later with points and lines. You
can also place a text with

> text(0.6,0.6,"text at (0.6,0.6)")
> abline(h=.6,v=.6)

Here, the abline call is just to show how the text is centered on the point
(0.6, 0.6). (Normally, abline plots the line y = a + bx when given a and b
as arguments, but it can also be used to draw horizontal and vertical lines
as shown.)

The margin coordinates are used by the mtext function. They can be
demonstrated as follows:

> for (side in 1:4) mtext(-1:4,side=side,at=.7,line=-1:4)
> mtext(paste("side",1:4), side=1:4, line=-1,font=2)

The for loop (see Section 2.3.1) places the numbers −1 to 4 on corre-
sponding lines in each of the four margins at an off-center position of 0.7
measured in user coordinates. The subsequent call places a label on each
side, giving the side number. The argument font=2means that a boldface
font is used. Notice in Figure 2.1 that not all the margins are wide enough
to hold all the numbers and that it is possible to use negative line numbers
to place text within the plotting region.

2.2.2 Building a plot from pieces

High-level plots are composed of elements, each of which can also be
drawn separately. The separate drawing commands often allow finer con-
trol of the element, so a standard strategy to achieve a given effect is first
to draw the plot without that element and add the element subsequently.
As an extreme case, the following command will plot absolutely nothing:

> plot(x, y, type="n", xlab="", ylab="", axes=F)

Here type="n" causes the points not to be drawn. axes=F suppresses
the axes and the box around the plot, and the x and y title labels are set to
empty strings.

2.2 The graphics subsystem 41

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Main title

subtitle
x−label

y−
la

be
l

text at (0.6,0.6)

−1
0
1
2
3
4

−
10123

−1
0
1
2
3

−
1 0 1

side 1

si
d

e
2

side 3

si
d

e
4

Figure 2.1. The layout of a standard plot.

However, the fact that nothing is plotted does not mean that nothing hap-
pened. The command sets up the plotting region and coordinate systems
just as if it had actually plotted the data. To add the plot elements, evaluate
the following:

> points(x,y)
> axis(1)
> axis(2,at=seq(0.2,1.8,0.2))
> box()
> title(main="Main title", sub="subtitle",
+ xlab="x-label", ylab="y-label")

Notice how the second axis call specifies an alternative set of tick marks
(and labels). This is a common technique used to create special axes on a
plot and might also be used to create nonequidistant axes as well as axes
with nonnumeric labelling.

Plotting with type="n" is sometimes a useful technique because it has
the side effect of dimensioning the plot area. For instance, to create a plot
with different colours for different groups, you could first plot all data
with type="n", ensuring that the plot region is large enough, and then

42 2. The R environment

add the points for each group using points. (Passing a vector argument
for col is more expedient in this particular case.)

2.2.3 Using par

The par function allows incredibly fine control over the details of a plot,
although it can be quite confusing to the beginner (and even to experi-
enced users at times). The best strategy for learning it may well be simply
to try and pick up a few useful tricks at a time and once in a while try to
solve a particular problem by poring over the help page.

Some of the parameters, but not all, can also be set via arguments to plot-
ting functions, which also have some arguments that cannot be set by par.
When a parameter can be set by both methods, the difference is generally
that if something is set via par, then it stays set subsequently.

The par settings allow you to control line width and type, character size
and font, colour, style of axis calculation, size of the plot and figure re-
gions, clipping, etc. It is possible to divide a figure into several subfigures
by using the mfrow and mfcol parameters.

For instance, the default margin sizes are just over 5, 4, 4, and 2 lines.
You might set par(mar=c(4,4,2,2)+0.1) before plotting. This shaves
one line off the bottom margin and two lines off the top margin of the
plot, which will reduce the amount of unused whitespace when there is
no main title or subtitle. If you look carefully, you will in fact notice that
Figure 2.1 has a somewhat smaller plotting region than the other plots in
this book. This is because the other plots have been made with reduced
margins for typesetting reasons.

However, it is quite pointless to describe the graphics parameters com-
pletely at this point. Instead, we return to them as they are used for specific
plots.

2.2.4 Combining plots

Some special considerations arise when you wish to put several elements
together in the same plot. Consider overlaying a histogram with a normal
density (see Sections 4.2 and 4.4.1 for information on histograms and Sec-
tion 3.5.1 for density). The following is close, but only nearly good enough
(figure not shown).

> x <- rnorm(100)
> hist(x,freq=F)
> curve(dnorm(x),add=T)

2.2 The graphics subsystem 43

The freq=F argument to hist ensures that the histogram is in terms of
densities rather than absolute counts. The curve function graphs an ex-
pression (in terms of x) and its add=T allows it to overplot an existing
plot. So things are generally set up correctly, but sometimes the top of the
density function gets chopped off. The reason is of course that the height
of the normal density played no role in the setting of the y-axis for the his-
togram. It will not help to reverse the order and draw the curve first and
add the histogram because then the highest bars might get clipped.

The solution is first to get hold of the magnitude of the y values for both
plot elements and make the plot big enough to hold both (Figure 2.2):

> h <- hist(x, plot=F)
> ylim <- range(0, h$density, dnorm(0))
> hist(x, freq=F, ylim=ylim)
> curve(dnorm(x), add=T)

Histogram of x

x

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.2. Histogram with normal density overlaid.

When called with plot=F, hist will not plot anything, but it will re-
turn a structure containing the bar heights on the density scale. This and
the fact that the maximum of dnorm(x) is dnorm(0) allows us to cal-
culate a range covering both the bars and the normal density. The zero in

44 2. The R environment

the range call ensures that the bottom of the bars will be in range, too.
The range of y values is then passed to the hist function via the ylim
argument.

2.3 R programming

It is possible to write your own R functions. In fact, this is a major as-
pect and attraction of working with the system in the long run. This book
largely avoids the issue in favour of covering a larger set of basic statistical
procedures that can be executed from the command line. However, to give
you a feel for what can be done, consider the following function, which
wraps the code from the example of Section 2.2.4 so that you can just
say hist.with.normal(rnorm(200)). It has been slightly extended
so that it now uses the empirical mean and standard deviation of the data
instead of just 0 and 1.

> hist.with.normal <- function(x, xlab=deparse(substitute(x)),...)
+ {
+ h <- hist(x, plot=F, ...)
+ s <- sd(x)
+ m <- mean(x)
+ ylim <- range(0,h$density,dnorm(0,sd=s))
+ hist(x, freq=F, ylim=ylim, xlab=xlab, ...)
+ curve(dnorm(x,m,s), add=T)
+ }

Notice the use of a default argument for xlab. If xlab is not specified,
then it is obtained from this expression, which evaluates to a character
form of the expression given for x; that is, if you pass rnorm(100) for
x, then the x label becomes “rnorm(100)”. Notice also the use of a ...
argument, which collects any additional arguments and passes them on
to hist in the two calls.

You can learn more about programming in R by studying the built-in
functions, starting with simple ones like log10 or weighted.mean.

2.3.1 Flow control

Until now, we have seen components of the R language that cause evalua-
tion of single expressions. However, R is a true programming language
that allows conditional execution and looping constructs as well. Con-
sider, for instance, the following code. (The code implements a version
of Newton’s method for calculating the square root of y.)

2.3 R programming 45

> y <- 12345
> x <- y/2
> while (abs(x*x-y) > 1e-10) x <- (x + y/x)/2
> x
[1] 111.1081
> x^2
[1] 12345

Notice the while(condition) expression construction, which says
that the expression should be evaluated as long as the condition is TRUE.
The test occurs at the top of the loop, so the expression might never be
evaluated.

A variation of the same algorithm with the test at the bottom of the loop
can be written with a repeat construction:

> x <- y/2
> repeat{
+ x <- (x + y/x)/2
+ if (abs(x*x-y) < 1e-10) break
+ }
> x
[1] 111.1081

This also illustrates three other flow control structures: (a) a compound ex-
pression, several expressions held together between curly braces; (b) an if
construction for conditional execution; and (c) a break expression, which
causes the enclosing loop to exit.

Incidentally, the loop could allow for y being a vector simply by changing
the termination condition to

if (all(abs(x*x - y) < 1e-10)) break

This would iterate excessively for some elements, but the vectorized
arithmetic would likely more than make up for that.

However, the most frequently used looping construct is for, which loops
over a fixed set of values as in the following example, which plots a set of
power curves on the unit interval.

> x <- seq(0, 1,.05)
> plot(x, x, ylab="y", type="l")
> for (j in 2:8) lines(x, x^j)

Notice the loop variable j, which in turn takes the values of the given
sequence when used in the lines call.

46 2. The R environment

2.3.2 Classes and generic functions

Object-oriented programming is about creating coherent systems of data
and methods that work upon them. One purpose is to simplify programs
by accommodating the fact that you will have conceptually similar meth-
ods for different types of data, even though the implementations will have
to be different. A prototype example is the print method: It makes sense
to print many kinds of data objects, but the print layout will depend on
what the data object is. You will generally have a class of data objects and
a print method for that class. There are several object-oriented languages
implementing these ideas in different ways.

Most of the basic parts of R use the same object system as S version 3. An
alternative object system similar to that of S version 4 has been developed
in recent years. The new system has several advantages over the old one,
but we shall restrict attention to the latter. The S3 object system is a sim-
ple system in which an object has a class attribute, which is simply a
character vector. One example of this is that all the return values of the
classical tests such as t.test have class "htest", indicating that they
are the result of a hypothesis test. When these objects are printed, it is
done by print.htest, which creates the nice layout (see Chapter 5 for
examples). However, from a programmatic viewpoint, these objects are
just lists, and you can, for instance, extract the p-value by writing

> t.test(bmi, mu=22.5)$p.value
[1] 0.7442183

The function print is a generic function, one that acts differently depend-
ing on its argument. These generally look like this:

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

What UseMethod("print") means is that R should pass control to a
function named according to the object class (print.htest for objects of
class "htest", etc.) or, if this is not found, to print.default. To see all
the methods available for print, type methods(print) (there are 138
of them in R 2.6.2, so the output is not shown here).

2.4 Data entry

Data sets do not have to be very large before it becomes impractical to type
them in with c(...). Most of the examples in this book use data sets in-

2.4 Data entry 47

cluded in the ISwR package, made available to you by library(ISwR).
However, as soon as you wish to apply the methods to your own data,
you will have to deal with data file formats and the specification thereof.

In this section we discuss how to read data files and how to use the data
editor module in R. The text has some bias toward Windows systems,
mainly because of some special issues that need to be mentioned for that
platform.

2.4.1 Reading from a text file

The most convenient way of reading data into R is via the function called
read.table. It requires that data be in “ASCII format”; that is, a “flat
file” as created with Windows’ NotePad or any plain-text editor. The result
of read.table is a data frame, and it expects to find data in a corre-
sponding layout where each line in the file contains all data from one
subject (or rat or . . .) in a specific order, separated by blanks or, option-
ally, some other separator. The first line of the file can contain a header
giving the names of the variables, a practice that is highly recommended.

Table 11.6 in Altman (1991) contains an example on ventricular circum-
ferential shortening velocity versus fasting blood glucose by Thuesen et
al. We used those data to illustrate subsetting and use them again in the
chapter on correlation and regression. They are among the built-in data
sets in the ISwR package and available as the data frame thuesen, but
the point here is to show how to read them from a plain-text file.

Assume that the data are contained in the file thuesen.txt, which looks
as follows:

blood.glucose short.velocity
15.3 1.76
10.8 1.34
8.1 1.27
19.5 1.47
7.2 1.27
5.3 1.49
9.3 1.31
11.1 1.09
7.5 1.18
12.2 1.22
6.7 1.25
5.2 1.19
19.0 1.95
15.1 1.28
6.7 1.52
8.6 NA
4.2 1.12

48 2. The R environment

10.3 1.37
12.5 1.19
16.1 1.05
13.3 1.32
4.9 1.03
8.8 1.12
9.5 1.70

To enter the data into the file, you could start up Windows’ NotePad
or any other plain-text editor, such as those discussed in Section 2.1.3.
Unix/Linux users should just use a standard editor, such as emacs or
vi. If you must, you can even use a word processing program with a little
care.

You should simply type in the data as shown. Notice that the columns
are separated by an arbitrary number of blanks and that NA represents a
missing value.

At the end, you should save the data to a text file. Notice that word pro-
cessors require special actions in order to save as text. Their normal save
format is difficult to read from other programs.

Assuming further that the file is in the ISwR folder on the N: drive, the
data can be read using

> thuesen2 <- read.table("N:/ISwR/thuesen.txt",header=T)

Notice header=T specifying that the first line is a header containing
the names of variables contained in the file. Also note that you use for-
ward slashes (/), not backslashes (\), in the filename, even on a Windows
system.

The reason for avoiding backslashes in Windows filenames is that the
symbol is used as an escape character (see Section 1.2.4) and therefore
needs to be doubled. You could have used N:\\ISwR\\thuesen.txt.

The result is a data frame, which is assigned to the variable thuesen2
and looks as follows:

> thuesen2
blood.glucose short.velocity

1 15.3 1.76
2 10.8 1.34
3 8.1 1.27
4 19.5 1.47
5 7.2 1.27
6 5.3 1.49
7 9.3 1.31
8 11.1 1.09
9 7.5 1.18
10 12.2 1.22

2.4 Data entry 49

11 6.7 1.25
12 5.2 1.19
13 19.0 1.95
14 15.1 1.28
15 6.7 1.52
16 8.6 NA
17 4.2 1.12
18 10.3 1.37
19 12.5 1.19
20 16.1 1.05
21 13.3 1.32
22 4.9 1.03
23 8.8 1.12
24 9.5 1.70

To read in factor variables (see Section 1.2.8), the easiest way may be to
encode them using a textual representation. The read.table function
autodetects whether a vector is text or numeric and converts it to a factor
in the former case (but makes no attempt to recognize numerically coded
factors). For instance, the secretin built-in data set is read from a file
that begins like this:

gluc person time repl time20plus time.comb
1 92 A pre a pre pre
2 93 A pre b pre pre
3 84 A 20 a 20+ 20
4 88 A 20 b 20+ 20
5 88 A 30 a 20+ 30+
6 90 A 30 b 20+ 30+
7 86 A 60 a 20+ 30+
8 89 A 60 b 20+ 30+
9 87 A 90 a 20+ 30+
10 90 A 90 b 20+ 30+
11 85 B pre a pre pre
12 85 B pre b pre pre
13 74 B 20 a 20+ 20
....

This file can be read directly by read.table with no arguments other
than the filename. It will recognize the case where the first line is one item
shorter than the rest and will interpret that layout to imply that the first
line contains a header and the first value on all subsequent lines is a row
label — that is, exactly the layout generated when printing a data frame.

Reading factors like this may be convenient, but there is a drawback: The
level order is alphabetic, so for instance

> levels(secretin$time)
[1] "20" "30" "60" "90" "pre"

50 2. The R environment

If this is not what you want, then you may have to manipulate the factor
levels; see Section 10.1.2.

A technical note: The files referenced above are contained in the ISwR
package in the subdirectory (folder) rawdata. Exactly where the file is
located on your system will depend on where the ISwR package was
installed. You can find this out as follows:

> system.file("rawdata", "thuesen.txt", package="ISwR")
[1] "/home/pd/Rlibrary/ISwR/rawdata/thuesen.txt"

2.4.2 Further details on read.table

The read.table function is a very flexible tool that is controlled by many
options. We shall not attempt a full description here but just give some
indication of what it can do.

File format details

We have already seen the use of header=T. A couple of other options
control the detailed format of the input file:

Field separator. This can be specified using sep. Notice that when this is
used, as opposed to the default use of whitespace, there must be ex-
actly one separator between data fields. Two consecutive separators
will imply that there is a missing value in between. Conversely, it
is necessary to use specific codes to represent missing values in the
default format and also to use some form of quoting for strings that
contain embedded spaces.

NA strings. You can specify which strings represent missing values via
na.strings. There can be several different strings, although not
different strings for different columns. For print files from the SAS
program, you would use na.strings=".".

Quotes and comments. By default, R-style quotes can be used to delimit
character strings, and parts of files following the comment character
are ignored. These features can be modified or removed via the
quote and comment.char arguments.

Unequal field count. It is normally considered an error if not all lines con-
tain the same number of values (the first line can be one item short,
as described above for the secretin data). The fill and flush
arguments can be used in case lines vary in length.

2.4 Data entry 51

Delimited file types

Applications such as spreadsheets and databases produce text files in for-
mats that require multiple options to be adjusted. For such purposes, there
exist “precooked” variants of read.table. Two of these are intended
to handle CSV files and are called read.csv and read.csv2. The for-
mer assumes that fields are separated by a comma, and the latter assumes
that they are separated by semicolons but use a comma as the decimal
point (this format is often generated in European locales). Both formats
have header=T as the default. Further variants are read.delim and
read.delim2 for reading delimited files (by default, Tab-delimited files).

Conversion of input

It can be desirable to override the default conversion mechanisms in
read.table. By default, nonnumeric input is converted to factors, but
it does not always make sense. For instance, names and addresses typi-
cally should not be converted. This can be modified either for all columns
using stringsAsFactors or on a per-item basis using as.is.

Automatic conversion is often convenient, but it is inefficient in terms
of computer time and storage; in order to read a numeric column,
read.table first reads it as character data, checks whether all elements
can be converted to numeric, and only then performs the conversion. The
colClasses argument allows you to bypass the mechanism by explic-
itly specifying which columns are of which class (the standard classes
"character", "numeric", etc., get special treatment). You can also skip
unwanted columns by specifying "NULL" as the class.

2.4.3 The data editor

R lets you edit data frames using a spreadsheet-like interface. The
interface is a bit rough but quite useful for small data sets.

To edit a data frame, you can use the edit function:

> aq <- edit(airquality)

This brings up a spreadsheet-like editor with a column for each vari-
able in the data frame. The airquality data set is built into R; see
help(airquality) for its contents. Inside the editor, you can move
around with the mouse or the cursor keys and edit the current cell by typ-
ing in data. The type of variable can be switched between real (numeric)
and character (factor) by clicking on the column header, and the name of

52 2. The R environment

the variable can be changed similarly. Note that there is (as of R 2.6.2) no
way to delete rows and columns and that new data can be entered only at
the end.

When you close the data editor, the edited data frame is assigned to aq.
The original airquality is left intact. Alternatively, if you do not mind
overwriting the original data frame, you can use

> fix(aq)

This is equivalent to aq <- edit(aq).

To enter data into a blank data frame, use

> dd <- data.frame()
> fix(dd)

An alternative would be dd <- edit(data.frame()), which works
fine except that beginners tend to reexecute the command when they need
to edit dd, which of course destroys all data. It is necessary in either case
to start with an empty data frame since by default edit expects you to
want to edit a user-defined function and would bring up a text editor if
you started it as edit().

2.4.4 Interfacing to other programs

Sometimes you will want to move data between R and other statistical
packages or spreadsheets. A simple fallback approach is to request that
the package in question export data as a text file of some sort and use
read.table, read.csv, read.csv2, read.delim, or read.delim2,
as previously described.

The foreign package is one of the packages labelled “recommended”
and should therefore be available with binary distributions of R. It
contains routines to read files in several formats, including those from
SPSS (.sav format), SAS (export libraries), Epi-Info (.rec), Stata, Systat,
Minitab, and some S-PLUS version 3 dump files.

Unix/Linux users sometimes find themselves with data sets written on
Windows machines. The foreign package will work there as well for
those formats that it supports. Notice that ordinary SAS data sets are
not among the supported formats. These have to be converted to ex-
port libraries on the originating system. Data that have been entered
into Microsoft Excel spreadsheets are most conveniently extracted using a
compatible application such as OOo (OpenOffice.org).

2.5 Exercises 53

An expedient technique is to read from the system clipboard. Say, high-
light a rectangular region in a spreadsheet, press Ctrl-C (if on Windows),
and inside R use

read.table("clipboard", header=T)

This does require a little caution, though. It may result in loss of accu-
racy since you only transfer the data as they appear on the screen. This is
mostly a concern if you have data to many significant digits.

For data stored in databases, there exist a number of interface packages on
CRAN. Of particular interest on Windows and with some Unix databases
is the RODBC package because you can set up ODBC (“Open Database
Connectivity”) connections to data stored by common applications, in-
cluding Excel and Access. Some Unix databases (e.g., PostgreSQL) also
allow ODBC connections.

For up-to-date information on these matters, consult the “R Data Im-
port/Export” manual that comes with the system.

2.5 Exercises

2.1 Describe how to insert a value between two elements of a vector at a
given position by using the append function (use the help system to find
out). Without append, how would you do it?

2.2 Write the built-in data set thuesen to a Tab-separated text file with
write.table. View it with a text editor (depending on your system).
Change the NA value to . (period), and read the changed file back into R
with a suitable command. Also try importing the data into other applica-
tions of your choice and exporting them to a new file after editing. You
may have to remove row names to make this work.

C
Compendium

Elementary

Commands

ls() or objects() List objects in workspace
rm(object) Delete object
search() Search path

Variable names

Combinations of letters, digits, and period. Must not start with a
digit. Avoid starting with period.

Assignments

<- Assign value to variable
-> Assignment “to the right”
<<- Global assignment (in functions)

326 Appendix C. Compendium

Operators

Arithmetic

+ Addition
- Subtraction, sign
* Multiplication
/ Division
^ Raise to power
%/% Integer division
%% Remainder from integer division

Logical and relational

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

is.na(x) Missing?
& Logical AND
| Logical OR
! Logical NOT

& and | are elementwise. See “Programming” (p. 336) for && and ||.

Appendix C. Compendium 327

Vectors and data types

Generating

numeric(25) 25 zeros
character(25) 25 × ""
logical(25) 25 × FALSE

seq(-4,4,0.1) Sequence: −4.0, −3.9, 3.8, . . . , 3.9, 4.0
1:10 Same as seq(1,10,1)

c(5,7,9,13,1:5) Concatenation: 5 7 9 13 1 2 3 4 5
rep(1,10) 1 1 1 1 1 1 1 1 1 1
gl(3,2,12) Factor with 3 levels, repeat each level in blocks

of 2, up to length 12 (i.e., 1 1 2 2 3 3 1 1 2 2 3 3)

Coercion

as.numeric(x) Convert to numeric
as.character(x) Convert to text string
as.logical(x) Convert to logical
factor(x) Create factor from vector x

For factors, see also “Tabulation, grouping, and recoding” (p. 331).

Data frames

data.frame(height =
c(165,185), weight =
c(90,65))

Data frame with two named vectors

data.frame(height,
weight)

Collect vectors into data frame

dfr$var Select vector var in data frame dfr
attach(dfr) Put data frame in search path
detach() — and remove it from path
Attached data frames always come after .GlobalEnv in the search path.
Attached data frames are copies; subsequent changes to dfr have no effect.

328 Appendix C. Compendium

Numerical functions

Mathematical

log(x) Logarithm of x, natural (base-e)
logarithm

log10(x) Base-10 logarithm
exp(x) Exponential function ex

sin(x) Sine
cos(x) Cosine
tan(x) Tangent
asin(x) Arcsin (inverse sine)
acos(x)
atan(x)
min(x) Smallest value in vector

min(x1,x2,...) Minimum over several vectors (one
number)

max(x) Largest value in vector
range(x) Like c(min(x),max(x))

pmin(x1,x2,...) Parallel (elementwise) minimum
over multiple equally long vectors

pmax(x1,x2,...) Parallel maximum
length(x) Number of elements in vector

sum(complete.cases(x)) Number of nonmissing elements in
vector

Statistical

mean(x) Average
sd(x) Standard deviation
var(x) Variance

median(x) Median
quantile(x,p) Quantiles

cor(x,y) Correlation

Appendix C. Compendium 329

Indexing/selection

x[1] First element
x[1:5] Subvector containing first five

elements
x[c(2,3,5,7,11)] Element nos. 2, 3, 5, 7, and 11

x[y<=30] Selection by logical expression
x[sex=="male"] Selection by factor variable

i <- c(2,3,5,7,11); x[i] Selection by numeric variable
l <- (y<=30); x[l] Selection by logical variable

Matrices and data frames

m[4,] Fourth row
m[,3] Third column

dfr[dfr$var<=30,] Partial data frame
subset(dfr,var<=30) Same, often simpler

Input of data

data(name) Built-in data set
read.table("filename") Read from external file

Common arguments to read.table

header=TRUE First line has variable names
sep="," Data are separated by commas
dec="," Decimal point is comma

na.strings="." Missing value is dot

Variants of read.table

read.csv("filename") Comma-separated
read.delim("filename") Tab-delimited
read.csv2("filename") Semicolon-separated, comma

decimal point
read.delim2("filename") Tab-delimited, comma decimal

point
These all set header=TRUE.

330 Appendix C. Compendium

Missing values

Functions

is.na(x) Logical vector. TRUE where x
has NA.

complete.cases(x1,x2,...) Missing neither in x1, nor x2,
nor. . . .

Arguments to other functions

na.rm= In statistical functions, remove
missing if TRUE, return NA if
FALSE.

na.last= In sort; TRUE, FALSE and NA
mean, respectively, “last”,
“first”, and “throw away”.

na.action= In lm, etc., values na.fail,
na.omit, na.exclude; also in
options("na.action").

na.print= In summary and
print.default; how to
represent NA in output.

na.strings= In read.table(); code(s) for
NA in input.

Appendix C. Compendium 331

Tabulation, grouping, and recoding

table(f1,...) (Cross)-tabulation
xtabs(~ f1 + ...) ditto, formula interface

ftable(f1 ~ f2 + ...) “Flat” tables
tapply(x,f,mean) Table of means

aggregate(df,list(f),mean) Means for several variables
by(df, list(f), summary) Summarize data frame by group

factor(x) Convert vector to factor
cut(x,breaks) Groups from cutpoints for

continuous variable

Arguments to factor

levels Values of x to code. Use if some
values are not present in data or
if the order would be wrong.

labels Values associated with factor
levels.

exclude Values to exclude. Default NA.
Set to NULL to have missing
values included as a level.

Arguments to cut

breaks Cutpoints. Note that values of x
outside breaks give NA.

labels Names for groups. Default is
(0,30], etc.

right Right endpoint included?
(FALSE: left)

Recoding factors

levels(f) <- names New level names
levels(f) <- list(Combining levels

new1=c("old1","old2")
new2="old3")

332 Appendix C. Compendium

Statistical distributions

Normal distribution

dnorm(x) Density
pnorm(x) Cumulative distribution

function, P(X ≤ x)
qnorm(p) p-quantile, x : P(X ≤ x) = p
rnorm(n) n (pseudo-)random normally

distributed numbers

Distributions

pnorm(x,mean,sd) Normal
plnorm(x,mean,sd) Lognormal

pt(x,df) Student’s t
pf(x,n1,n2) F distribution
pchisq(x,df) χ2

pbinom(x,n,p) Binomial
ppois(x,lambda) Poisson
punif(x,min,max) Uniform
pexp(x,rate) Exponential

pgamma(x,shape,scale) Gamma
pbeta(x,a,b) Beta

Same convention (d-q-r) for density, quantiles, and random numbers as for normal
distribution.

Appendix C. Compendium 333

Statistical standard methods

Continuous response

t.test One- and two-sample t tests
pairwise.t.test Pairwise comparisons

cor.test Correlation
var.test Comparison of two variances

(F test)
lm(y ~ x) Regression analysis
lm(y ~ f) One-way analysis of variance

lm(y ~ f1 + f2) Two-way analysis of variance
lm(y ~ f + x) Analysis of covariance

lm(y ~ x1 + x2 + x3) Multiple regression analysis
bartlett.test Bartlett’s test (k variances)

Nonparametric:
wilcox.test One- and two-sample

Wilcoxon tests
kruskal.test Kruskal–Wallis test
friedman.test Friedman’s two-way analysis

of variance
cor.test variants:

method="kendall" Kendall’s τ
method="spearman" Spearman’s ρ

Discrete response

binom.test Binomial test (incl. sign test)
prop.test Comparison of proportions

prop.trend.test Test for trend in relative
proportions

fisher.test Exact test in small tables
chisq.test χ2 test

glm(y ~ x1+x2+x3, binomial) Logistic regression

334 Appendix C. Compendium

Models

Model formulas

~ Described by
+ Additive effects
: Interaction
* Main effects + interaction

(a*b = a + b + a:b)
-1 Remove intercept

Classifications are represented by descriptive variable being a factor.

Linear, nonlinear, and generalized linear models

lm.out <- lm(y ~ x) Fit model and save result
summary(lm.out) Coefficients, etc.
anova(lm.out) Analysis of variance table
fitted(lm.out) Fitted values
resid(lm.out) Residuals

predict(lm.out, newdata) Predictions for new data frame
glm(y ~ x, binomial) Logistic regression
glm(y ~ x, poisson) Poisson regression
nls(y ~ a*exp(-b*x), Nonlinear regression
start=c(a=5, b=.2))

Diagnostics

rstudent(lm.out) Studentized residuals
dfbetas(lm.out) Change in β if obs. removed
dffits(lm.out) Change in fit if obs. removed

Survival analysis

S <- Surv(time, ev) Create survival object
survfit(S) Kaplan–Meier estimate

plot(survfit(S)) Survival curve
survdiff(S ~ g) (Log-rank) test for equal

survival curves
coxph(S ~ x1 + x2) Cox’s proportional hazards

model

Appendix C. Compendium 335

Graphics

Standard plots

plot() Scatterplot (and more)
hist() Histogram

boxplot() Box-and-whiskers plot
stripplot() Stripplot
barplot() Bar diagram
dotplot() Dot diagram
piechart() Cakes. . .

interaction.plot() Interaction plot

Plotting elements

lines() Lines
abline() Line given by intercept and slope

(and more)
points() Points

segments() Line segments
arrows() Arrows (N.B.: angle=90 for error

bars)
axis() Axis
box() Frame around plot

title() Title (above plot)
text() Text in plot
mtext() Text in margin
legend() List of symbols

These are all added to existing plots.

Graphical parameters

pch Symbol (plotting character)
mfrow, mfcol Several plots on one (multif rame)
xlim, ylim Plot limits
lty,lwd Line type/width

col Colour
cex, mex Character size and line spacing in

margins
See the help page for par for more details.

336 Appendix C. Compendium

Programming

Conditional execution
if(p<0.05)

print("Hooray!")

— with alternative

if(p<0.05)
print("Hooray!")

else
print("Bah.")

Loop over list
for(i in 1:10)

print(i)

Loop

i <- 1
while(i<10) {

print(i)
i <- i + 1

}

User-defined function

f <- function(a,b,doit=FALSE){
if (doit)

a + b
else

0
}

In flow control, one uses a && b and a || b, where b is only
computed if necessary; that is, if a then b else FALSE and
if a then TRUE else b.

D
Answers to exercises

1.1 One possibility is

x <- y <- c(7, 9, NA, NA, 13)
all(is.na(x) == is.na(y)) & all((x == y)[!is.na(x)])

Notice that FALSE & NA is FALSE, so the case of different NA patterns is
handled correctly.

1.2 Factor x gets treated as if it contained the integer codes.

x <- factor(c("Huey", "Dewey", "Louie", "Huey"))
y <- c("blue", "red", "green")
x
y[x]

(This is useful, e.g., when selecting plot symbols.)

1.3

juul.girl <- juul[juul$age >=7 & juul$age < 14 & juul$sex == 2,]
summary(juul.girl)

1.4 The levels with the same name are collapsed into one.

1.5 sapply(1:10, function(i) mean(rexp(20)))

2.1 To insert 1.23 between x[7] and x[8]:

338 Appendix D. Answers to exercises

x <- 1:10
z <- append(x, 1.23, after=7)
z

Otherwise, consider

z <- c(x[1:7],1.23,x[8:10])
z

or, more generally, to insert v just after index k (the boundary cases require
some care),

v <- 1.23; k <- 7
i <- seq(along=x)
z <- c(x[i <= k], v, x[i > k])
z

2.2 (First part only) Use

write.table(thuesen, file="foo.txt")
edit the file
read.table("foo.txt", na.strings=".")

or

write.table(thuesen, file="foo.txt", na=".")
read.table("foo.txt", na.strings=".")

(Notice that if you do not edit the file in the first case, then the second
column gets read as a character vector.)

3.1

1 - pnorm(3)
1 - pnorm(42, mean=35, sd=6)
dbinom(10, size=10, prob=0.8)
punif(0.9) # this one is obvious...
1 - pchisq(6.5, df=2)

It might be better to use lower.tail=FALSE instead of subtracting from
1 in (a), (b), and (e). Notice that question (c) is about a point probability,
whereas the others involve the cumulative distribution function.

3.2 Evaluate each of the following. Notice that the standard normal can
be used for all questions.

pnorm(-2) * 2
qnorm(1-.01/2)
qnorm(1-.005/2)
qnorm(1-.001/2)
qnorm(.25)
qnorm(.75)

