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Chapter 1. Overview and Descriptive Statigtics

CHAPTER 1

Section 1.1

a.  Houston Chronicle, Des Moines Register, Chicago Tribune, Washington Post
b. Capital One, Campbell Soup, Merrill Lynch, Pulitzer
c. Bill Jasper, Kay Reinke, Helen Ford, David Menedez

d. 178,244,35304

2.
a 29.1yd., 28.3yd., 24.7 yd., 31.0 yd.
b. 432,196, 184, 321
c. 21403263
d. 0079,158¢9,719,27.2¢g
3.

a. Inasampleof 100 VCRs, what are the chances that more than 20 need service while
under warrantee? What are the chances than none need service while still under
warrantee?

b. What proportion of all VCRs of this brand and mode!l will need service within the
warrantee period?



Chapter 1. Overview and Descriptive Statigtics

a.  Concrete: All living U.S. Citizens, all mutual funds marketed in the U.S,, al books
published in 1980.

Hypothetical: All grade point averages for University of California undergraduates
during the next academic year. Page lengthsfor all books published during the next
calendar year. Batting averagesfor all major |eague players during the next baseball
season.

b. Concrete: Probability: In a sample of 5 mutual funds, what is the chance that all 5 have
rates of return which exceeded 10% last year?

Statistics:  If previous year rates-of-return for 5 mutual funds were 9.6, 14.5, 8.3, 9.9
and 10.2, can we conclude that the average rate for all funds wasbelow 10%?

Conceptual: Probability: In asample of 10 books to be published next year, how likely is
it that the average number of pagesfor the 10 is between 200 and 2507

Statistics:  If the sample average number of pages for 10 booksis 227, can we be
highly confident that the average for all books is between 200 and 245?

a. No, therelevant conceptual populationisall scores of all students who participate in the
Sl in conjunction with this particular statistics course.

b. Theadvantage to randomly choosing studentsto participate in the two groupsis that we
aremore likely to get a sample representative of the population at large. If it wereleft to
students to choose, there may be adivision of abilitiesin the two groups which could
unnecessarily affect the outcome of the experiment.

c. If al studentswere put in the treatment group there would be no results with which to
compare the treatments.

One could take a simple random sample of students from all studentsin the California State
University system and ask each student in the sample to report the distance form their
hometown to campus. Alternatively, the sample could be generated by taking a stratified
random sample by taking a simple random sample from each of the 23 campuses and again
asking each student in the sample to report the distance from their hometown to campus.
Certain problems might arise with self reporting of distances, such as recording error or poor
recall. Thisstudy isenumerative because there exists afinite, identifiable population of
objects from which to sample.

One could generate a simple random sample of all single family homesin the city or a
stratified random sample by taking a simple random sample from each of the 10 district
neighborhoods. From each of the homesin the sample the necessary variables would be
collected. Thiswould be an enumerative study because there exists afinite, identifiable
population of objects from which to sample.
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8.

a.  Number observationsequal 2x2x2=8

b. Thiscould be called an analytic study because the data would be collected on an existing
process. Thereisno sampling frame.

9.

a. Therecould be several explanations for the variability of the measurements. Among
them could be measuring error, (due to mechanical or technical changes across
measurements), recording error, differencesin weather conditions at time of
measurements, etc.

b. Thiscould be called an analytic study because there is no sampling frame.

Section 1.2
10.

a.  Minitab generates the following stem-and-leaf display of thisdata:

9

33588

00234677889

127

o77 stem: ones
1017 leaf: tenths
11/368

© 00~ & N

What constitutes large or small variation usually depends on the application at hand, but
an often-used rule of thumb is: the variation tends to be large whenever the spread of the
data (the difference between the largest and smallest observations) islarge compared to a
representative value. Here, 'large’ means that the percentage is closer to 100% than it isto
0%. For thisdata, the spread is 11 - 5= 6, which constitutes 6/8 = .75, or, 75%, of the
typical datavalue of 8. Most researchers would call this alarge amount of variation.

b. Thedatadisplay isnot perfectly symmetric around some middle/representative value.
There tends to be some positive skewnessin this data.

c. InChapter 1, outliers are data points that appear to be very different from the pack.
Looking at the stem-and-leaf display in part (a), there appear to be no outliersin this data.
(Chapter 2 gives amore precise definition of what constitutes an outlier).

d. Fromthe stemand-leaf display in part (a), there are 4 values greater than 10. Therefore,
the proportion of datavaluesthat exceed 10is4/27 = .148, or, about 15%.
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12.
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6l |034

6h 1667899
71 |00122244

7h

8 001111122344

Stem=Tens
Leaf=Ones

8h |5557899

9 |03
% (58

This display brings out the gap in the data:
There are no scoresin the high 70's.

One method of denoting the pairs of stems having equal valuesisto denote the first stem by
L, for 'low', and the second stem by H, for 'high'. Using this notation, the stem-and-leaf
display would appear asfollows:

3L
3H
a
4H
5L
5H
6L
6H
7L
7H

1

56678

000112222234

5667888

144

58 stem: tenths

2 leaf: hundredths
6678

5

The stem-and-leaf display on the previous page shows that .45 is a good representative value
for thedata. In addition, the display is not symmetric and appears to be positively skewed.

The spread of the datais.75 - .

31 = .44, whichis.44/.45 = .978, or about 98% of the typical

value of .45. This constitutes areasonably large amount of variation in the data. The data

value.75isapossible outlier
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12| 2 Leaf = ones
12 | 445 Stem = tens
12 | 6667777

12 | 889999

13 | 00011111111

13 | 2222222222333333333333333

13 | 44444444444444444455555555555555555555
13 | 6666666666667777777777

13 | 888888888888999999

14 | 0000001111

14 | 2333333

14 | 444

14 | 77

The observations are highly concentrated at 134 — 135, where the display suggests the
typical valuefalls.

30 —

20 —

Frequency

10 —

o

T T T T T T T T T T T T T T
122 124 126 128 130 132 134 136 138 140 142 144 146 148

strength

The histogram is symmetric and unimodal, with the point of symmetry at approximately
135.
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2|23 stem units: 1.0
3| 2344567789 leaf units: .10
4 | 01356889
5| 00001114455666789
6 | 0000122223344456667789999
7 | 00012233455555668
8| 02233448
9 | 012233335666788
10 | 2344455688
11 | 2335999
12 | 37
13 8
14 | 36
15 | 0035

b. A representative value could be the median, 7.0.
c. Thedataappear to be highly concentrated, except for afew values on the positive side.
d. No, thedataisskewed to theright, or positively skewed.

e. Thevalue 18.9 appearsto be an outlier, being more than two stem units from the previous
value.

Crunchy Creamy
2 |2
644 3 (69
77220 4 |145
6320| 5 |3666

222| 6 (258
55| 7
o 8

Both sets of scores are reasonably spread out. There appear to be no
outliers. Thethree highest scores are for the crunchy peanut butter, the
three lowest for the creamy peanut butter.
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16.
a
beams cylinders
9 5 |8
88533 6 |16
988776432000 7 |012488
721 8 (13359
700 9 (278
71 10
863 11 (2
12 |6
13
14 |1
The data appears to be slightly skewed to theright, or positively skewed. The value of
14.1 appearsto be an outlier. Three out of the twenty, 3/20 or .15 of the observations
exceed 10 Mpa.

b. Themajority of observations are between 5 and 9 Mpa for both beams and cylinders,
with the modal classinthe 7 Mparange. The observationsfor cylinders are more
variable, or spread out, and the maximum value of the cylinder observationsishigher.

c. Dot Plot

- [ TS —— [ TS —— [ TS —— [ TS —— +- - - - -
cyl i nder
6.0 7.5 9.0 10.5 12.0 13.5
17.
a
Number
Nonconforming Freguency Rel ativeFrequency(Frea/60)
0 7 0117
1 12 0.200
2 13 0.217
3 14 0.233
4 6 0.100
5 3 0.050
6 3 0.050
7 1 0.017
8 1 0.017

doesn't add exactly to 1 because relative frequencies have been rounded 1.001

The number of batches with at most 5 nonconforming itemsis 7+12+13+14+6+3 = 55,
which isa proportion of 55/60 = .917. The proportion of batches with (strictly) fewer
than 5 nonconforming itemsis 52/60 = .867. Notice that these proportions could also
have been computed by using the relative frequencies: e.g., proportion of batcheswith 5
or fewer nonconforming items = 1- (.05+.017+.017) = .916; proportion of batcheswith
fewer than 5 nonconforming items = 1 - (.05+.05+.017+.017) = .866.

7
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c. ThefollowingisaMinitab histogram of thisdata. The center of the histogramis
somewhere around 2 or 3 and it shows that there is some positive skewnessin the data.
Using the rule of thumb in Exercise 1, the histogram also shows that thereisalot of
spread/variation in this data.

Relative
Frequency

.20 7

.10

.00

1 T T T T T T 1T
o 1 2 3 4 5 6 7 8

Number
18.

a.
The followina histogram was constructed using Minitab:

800 — —
700 —
600 —
500 —
400 —|
300 —

200 —
] hﬁr—v—*
0 —
T T T T T T T T T T

O 2 4 6 8 10 12 14 16 18
Number of papers

Frequency

The most interesting feature of the histogram isthe heavy positive skewness of the data.

Note: One way to have Minitab automatically construct a histogram from grouped data
such asthisisto use Minitab's ability to enter multiple copies of the same number by
typing, for example, 784(1) to enter 784 copies of the number 1. The frequency datain
this exercise was entered using the following Minitab commands:

MTB > set cl

DATA> 784(1) 204(2) 127(3) 50(4) 33(5) 28(6) 19(7) 19(8)
DATA> 6(9) 7(10) 6(11) 7(12) 4(13) 4(14) 5(15) 3(16) 3(17)
DATA> end
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From the frequency distribution (or from the histogram), the number of authors who
published at least 5 papersis 33+28+19+...+5+3+3 = 144, so the proportion who
published 5 or more papersis 144/1309 = .11, or 11%. Similarly, by adding frequencies
and dividing by n = 1309, the proportion who published 10 or more papersis 39/1309 =
.0298, or about 3%. The proportion who published more than 10 papers (i.e., 11 or more)
iS32/1309 = .0245, or about 2.5%.

No. Strictly speaking, the class described by ' 3 15 ' has no upper boundary, soitis
impossible to draw arectangle aboveit having finite area (i.e., frequency).

The category 15-17 does have afinite width of 2, so the cumulated frequency of 11 can
be plotted as arectangle of height 6.5 over thisinterval. The basic ruleisto make the
area of the bar equal to the class frequency, so area = 11 = (width)(height) = 2(height)
yieldsaheight of 6.5.

From this freguency distribution, the proportion of wafers that contained at |east one
particleis (100-1)/100 = .99, or 99%. Note that it ismuch easier to subtract 1 (whichis
the number of wafers that contain O particles) from 100 than it would be to add all the
frequenciesfor 1, 2, 3,... particles. Inasimilar fashion, the proportion containing at |east
5 particlesis (100 - 1-2-3-12-11)/100 = 71/100 = .71, or, 71%.

The proportion containing between 5 and 10 particlesis (15+18+10+12+4+5)/100 =
64/100 = .64, or 64%. The proportion that contain strictly between 5 and 10 (meaning
strictly more than 5 and strictly less than 10) is (18+10+12+4)/100 = 44/100 = .44, or
44%.

The following histogram was constructed using Minitab. The data was entered using the
same technique mentioned in the answer to exercise 8(a). The histogram isal most
symmetric and unimodal; however, it has afew relative maxima (i.e., modes) and has a
very slight positive skew.

Relative frequency

20 —

.00 —1

T T T T
0 5 10 15
Number of particles
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a. Thefollowing stem-and-leaf display was constructed:

123334555599

00122234688 stem: thousands
1112344477 leaf: hundreds
0113338

37

23778

A D WN = O

A typical datavalueis somewhereinthelow 2000's. Thedisplay isamost unimodal (the
stem at 5 would be considered a mode, the stem at 0 another) and has a positive skew.

b. A histogram of this data, using classes of width 1000 centered at 0, 1000, 2000, 6000 is
shown below. The proportion of subdivisions with total length lessthan 2000 is
(12+11)/47 = .489, or 48.9%. Between 200 and 4000, the proportionis (7 + 2)/47 = .191,
or 19.1%. The histogram shows the same general shape as depicted by the stem-and-leaf
in part (a).

Frequency

10 —

10
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21.

a. A histogram of they data appears below. From this histogram, the number of
subdivisions having no cul-de-sacs (i.e., y = 0) is 17/47 = .362, or 36.2%. The proportion
having at least one cul-de-sac (y 3 1) is (47-17)/47 = 30/47 = .638, or 63.8%. Note that

subtracting the number of cul-de-sacs with y = 0 from the total, 47, is an easy way to find
the number of subdivisionswithy?3 1.

Frequency

20 —

10 -

b. A histogram of the z data appears below. From this histogram, the number of

subdivisions with at most 5 intersections (i.e., z £ 5) is42/47 = .894, or 89.4%. The
proportion having fewer than 5 intersections (z < 5) is 39/47 = .830, or 83.0%.

Frequency

10 —

1
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22. A very large percentage of the data values are greater than O, which indicates that most, but
not all, runners do slow down at the end of therace. The histogram is also positively skewed,
which means that some runners slow down alot compared to the others. A typical valuefor
this data would be in the neighborhood of 200 seconds. The proportion of the runners who
ran thelast 5 km faster than they did thefirst 5 km isvery small, about 1% or so.

23.

30 —

20 —

Percent

10 —

0 — _|_|_| —

T T T T T T T T T T

0 100 200 300 400 500 600 700 800 900
brkstgth

The histogram is skewed right, with amajority of observations between 0 and 300 cycles.
The class holding the most observationsis between 100 and 200 cycles.



Chapter 1. Overview and Descriptive Statigtics

b.
0.004 | ]
0.003
=y
2 0.002
[
a
0.001 —
0.000 —
L T T T T T
0 501005@00 300 400 500 600 900
brkstgth
c [proportion 3 100] = 1—[proportion<100] =1-.21=.79
24,
20 — | ]
€
3
= 10 —
&
0 — —

T T T T T T T T T T T
4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

weldstrn

13
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25. Histogram of original data:

15 —

10 —

Frequency

Histogram of transformed data:

Frequency

7 ]

11 12 13 14 15 16 17 18 19
log(IDT)

The transformation creates amuch more symmetric, mound-shaped histogram.

14
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ClassIntervals Frequency Rd.Freq.
15-<.25 8 0.02192
25-<.35 14 0.03836
35-< 45 28 0.07671
A45-< 50 24 0.06575
50-<.55 39 0.10685
55-<.60 51 0.13973
60-<.65 106 0.29041
65-<.70 84 0.23014
70-<.75 1 0.03014
n=365 1.00001
6 — —
5 -
4 -
)
2.
[
[a) 2
1 -
T =
T T T T T T T

0.15 0.25 0.35

0.45 0.500.550.60 0.650.700.75

clearness

b. The proportion of dayswith aclearnessindex smaller than .35is

15

(8+4)
365

c. Theproportion of dayswith aclearnessindex of at least .65is M

= .06, 0r 6%.

= .26, or 26%.
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a. Theendpoints of the classintervals overlap. For example, the value 50 fallsin both of the
intervals‘0—50" and 50— 100'.

b.
Class Interval Frequency Relative Frequency
0-< 50 9 0.18
50 - < 100 19 0.38
100 - < 150 11 0.22
150 - < 200 4 0.08
200 - < 250 2 0.04
250 - < 300 2 0.04
300 - < 350 1 0.02
350 - < 400 1 0.02
>= 400 1 0.02
50 1.00
20 - —
>
2
g 10 -

g

L
0 [ T B —

é SIO 1(I)O lEiO 2(!J0 2;:0 3(IJO 3;)0 4(;0 45IO 5(I)0 5510 6(I)0
lifetime

Thedistribution is skewed to the right, or positively skewed. Thereisagapinthe
histogram, and what appearsto be an outlier in the ‘500 — 550" interval.

16
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Class Interval

Frequency Relative Frequency

225-< 2.75
2.75-<3.25
3.25-<3.75
3.75-<4.25
425 -<4.75
475 -<5.25
5.25-<5.75
5.75-<6.25

2
2
3
8
18
10
4
3

0.04
0.04
0.06
0.16
0.36
0.20
0.08
0.06

20 —

Frequency
5
]

11 |

—

0 —

T T
225 275

325 3.75 425 475 525 575 625

In lifetime

The distribution of the natural logs of the original data is much more symmetric than the

original.

d. Theproportion of lifetime observationsin this sample that are lessthan 100 is .18 + .38
= .56, and the proportion that isat least 200is.04 + .04 + .02 + .02 + .02 =.14.

28. There are seasonal trends with lows and highs 12 months apart.

radtn

16 —

Index

10

20 30 40

17
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Complaint  Frequency Relative Frequency
B 7 01167
C 3 0.0500
F 9 0.1500
J 10 0.1667
M 4 0.0667
N 6 0.1000
0] 21 0.3500
60 1.0000
20 — ]
:
o 10 —
U0 Hjugs
B ¢ F 3 M N

s wdhpE

Count of prodprob

complaint

o

200 —

prodprob

incorrect comp onent
mi ssing component
failed component
insufficient solder
excess solder

18
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Rdative Cumulative Rdative
Class Frequency Frequency Frequency

0.0 - under 4.0 2 2 0.050

4.0-under 8.0 14 16 0.400

8.0 - under 12.0 11 27 0.675

12.0 - under 16.0 8 35 0.875

16.0 - under 20.0 4 39 0.975

20.0 - under 24.0 0 39 0.975

24.0 - under 28.0 1 40 1.000

a. Thefrequency distributionis:
Rdative Rdative
Class Frequency Class Frequency

0<150 193 900-<1050 .019
150-< 300 183 1050-<1200 .029
300-< 450 251 1200-<1350 .005
450-< 600 .148 1350-<1500 .004
600-< 750 097 1500-<1650 .001
750-< 900 .066 1650-<1800 .002
1800-<1950 .002

Therelative frequency distribution is almost unimodal and exhibits alarge positive
skew. Thetypical middlie value is somewhere between 400 and 450, although the
skewness makesit difficult to pinpoint more exactly than this.

b. The proportion of the fireloads lessthan 600 is.193+.183+.251+.148 = .775. The
proportion of loads that are at least 1200 is .005+.004+.001+.002+.002 = .014.

c. Theproportion of loads between 600 and 1200is1-.775-.014 = .211.

19
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1.3

X=19257, X =189. The mean islarger than the median, but they are still
fairly close together.

Changing the onevalue, X =189.71, X =189. The mean islowered, the
median stays the same.

X, =191.0. %4 =.07 or 7% trimmed from each tail.

For n= 13, Sx = (119.7692) x 13 = 1,557
For n=14, Sx = 1,557 + 159 =1,716

X = % =122.5714 or 1226

The sum of the n = 11 data pointsis 514.90, so X =514.90/11 = 46.81.

The sample size (n=11) isodd, so there will be amiddle value. Sorting from smallest to
largest: 44 164 222 300 331 36.6 404 66.7 737 8L5 109.9. Thesixth

value, 36.6 isthe middle, or median, value. The mean differsfrom the median because
the largest sample observations are much further from the median than are the smallest
values.

Deleting the smallest (x = 4.4) and largest (x = 109.9) values, the sum of the remaining 9
observations is 400.6. The trimmed mean X, is400.6/9 = 44.51. Thetrimming

percentageis 100(1/11) » 9.1%. X,, lies between the mean and median.

The sample mean is X = (100.4/8) = 12.55.

The samplesize (n = 8) iseven. Therefore, the sample median is the average of the (n/2)
and (n/2) + 1 values. By sorting the 8 valuesin order, from smallest to largest: 8.0 8.9
11.0 12.0 13.0 145 15.0 18.0, theforth andfifth valuesare 12 and 13. The sample
medianis(12.0 + 13.0)/2=125.

The 12.5% trimmed mean requires that we first trim (.125)(n) or 1 value from the ends of
the ordered data set. Then we average the remaining 6 values. The 12.5% trimmed mean

X (125) 1STANB =124,

All three measures of center are similar, indicating little skewness to the data set.

The smallest value (8.0) could be increased to any number below 12.0 (a change of less
than 4.0) without affecting the value of the sample median.

20
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c. Thevaluesobtainedin part (a) can be used directly. For example, the sample mean of
12.55 psi could be re-expressed as
e lks O .
(1255 ps) x -+=5.70ksi .
2.2ps g

a. A stemand leaf display of this data appears below:

55 stem: ones
49 leaf: tenths

6699
34469
03345
9
392347
40,23

4]
424

BUBHRRBY

Thedisplay isreasonably symmetric, so the mean and median will be close.

b. Thesamplemeanis X =9638/26 = 370.7. The sample medianis
X = (369+370)/2 = 369.50.

c. Thelargest value (currently 424) could be increased by any amount. Doing so will not
change the fact that the middle two observations are 369 and 170, and hence, the median
will not change. However, the value x = 424 can not be changed to a number less than
370 (achange of 424-370 = 54) since that will lower the values(s) of the two middle
observations.

d. Expressedin minutes, the mean is(370.7 sec)/(60 sec) = 6.18 min; the median is6.16

min.

X=12.01, X =11.35, X, 0, =11.46. Themedian or the trimmed mean would be good
choices because of the outlier 21.9.

a. Thereported values are (in increasing order) 110, 115, 120, 120, 125, 130, 130, 135, and
140. Thus the median of the reported valuesis 125.

b. 127.6isreported as 130, so the median is now 130, avery substantial change. When there
isrounding or grouping, the median can be highly sensitive to small change.

21
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16475

a Sx =16.475s0X = =1.0297

_ (LO07+1011) _, o0

X

b. 1.394 can be decreased until it reaches 1.011(the largest of the 2 middle values) —i.e. by
1.394-1.011=.383, If itisdecreased by more than .383, the median will change.

X = 60.8
%.,(25 = 59.3083
%, 10) = 58.3475

X =58.54
All four measures of center have about the same value.

a %02.70

b. X =.70= proportion of successes

S
c. — =.80 s0s=(0.80)(25)=20
5 (0.80)(25)

total of 20 successes
20— 7 = 13 of the new cars would have to be successes

Sy, S(x.+c) Sx

n n n n

y =themedianof (X, +C, X, +C,..., X, +C) =median of
(X, X5y X, ) FC=X +C

a y=

Sy, _ S(x,>x) _cSx

b. Y= =cX
n n n
y = (CX, CXy,..., €X,,) = CXMEdiAN(X], Xy .00 X, ) = CX
. (57+79) _ . .
median = —— = = 68.0 , 20% trimmed mean = 66.2, 30% trimmed mean = 67.5.



Section 1.4

44,

45,

a

b.
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range=49.3-235=258

S

S

2

X, (% - X) (% - X)? X;
295 -153 2.3409 870.25
493 18.27 333.7929 2430.49
30.6 -043 0.1849 936.36
28.2 -2.83 8.0089 795.24
280 -3.03 9.1809 784.00
26.3 -4.73 22.3729 691.69
339 2.87 8.2369 1149.21
24 -1.63 2.6569 864.36
235 -753 56.7009 552.25
316 057 0.3249 998.56
Sx=3103 S(x, - X) =0 S(x - X)? =443.801 S(x?) =10,072.41
X =31.03

A _ w)2
,_ o~ X)" 443801

S

n-1

- o7 -

7.0222

Sx? - (Sx)2/n _10,072.41- (310.3)?/10

=49.3112

n-1

9

I
1164 - 11558 = .82, 115.9 - 115.58 = .32, 114.6 -115.58 = -.98,
115.2 - 11558 = -.38, and 115.8-115.58 = .22.

S2 =[(:82)% + (:32)? + (-.98) + (-.38) + (.22)]/(5-1) = 1.928/4 =482,

S0 S=.694.

A x° =6679561, 005 =
i

D~

A

>

o

'®

X -

[66,795.61 - (577.9)%/5]/4 = 1.928/4 = .A82.
Subtracting 100 from all values gives X =15.58, all deviations are the same asin
part b, and the transformed variance isidentical to that of part b.
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X = %é X, =577.9/5=11558. Deviationsfrom the mean:

=49.3112
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a X = Fé X, =14438/5=2887.6. Thesorted datais: 2781 2856 2888 2900 3013,

so the sample median is X = 2888.

b. Subtracting a constant from each observation shifts the data, but does not change its
sample variance (Exercise 16). For example, by subtracting 2700 from each observation
we get the values 81, 200, 313, 156, and 188, which are smaller (fewer digits) and easier
towork with. The sum of squares of thistransformed datais 204210 and its sumis 938,
so the computational formulafor the variance gives s? =[204210-(938)%/5]/(5-1) =
7060.3.

The sample mean, i:lé X :1—]6(1,162):Y:116.2.
n

5 - @xF [ 560, 11627

The sample standard deviation, S= n 10~ 25.75
n-1 9

On average, we would expect afracture strength of 116.2. In general, the size of atypical

deviation from the sample mean (116.2) is about 25.75. Some observations may deviate from

116.2 by more than this and some by less.

éo 2 o8] 620
Using the computational formula, s*= 7.3 89 X~ - 5¢@ X%~ U=
gi ei a4

[3,587,566-(9638)%/26]/(26-1) =593.3415, s0s=24.36. Ingenera, thesize of atypical
deviation from the sample mean (370.7) is about 24.4. Some observations may deviate from
370.7 by alittle more than this, some by less.

a SX=275+..+3.01=56.80, SX? = (2.75) +... + (3.01)? = 197.8040

& - 197.8040- (56.80)/17 _ 8.0252
16

=.5016, s=.708

24
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First, we need X= e a x :2—17 (20,179) =747.37. Then we need the sample standard
n
2
24.657,511- M
deviation S= %6 27 = 606.89. The maximum award should be

X + 25 = 747.37 + 2(606.89) =1961.16, or in dollar units, $1,961,160. Thisisquitea
bit less than the $3.5 million that was awarded originally.

a Sx=2563 and Sx* = 368,501, so

_ 2
57 = 1308301 (2569 119 _ 1564 766 ang 5= 35.564

18
b. Ify=timeinminutes, theny = cx where C =$, S0
52 =¢?s? = 2204700 _ a5 g s, =Cs, = 35564 _ 503

Y X 3600

Let d denote the fifth deviation. Then .3+.9+1.0+1.3+d=00r 35+d =0, so

d = - 3.5. Onesample for which these are the deviationsis X, = 3.8, X, = 4.4,

X; =45, X, =4.8, X, = 0. (obtained by adding 3.5 to each deviation; adding any other
number will produce adifferent sample with the desired property)

a. lowerhaf: 2342432622742742752.783.01346
upper half: 3.46 3.56 3.65 3.85 3.88 3.93 4.21 4.33 4.52
Thusthe lower fourth is 2.74 and the upper fourth is 3.88.

b. f,=3.88-274=114
C. fS wouldn’t change, since increasing the two largest val ues does not affect the upper
fourth.

d. By at most .40 (that is, to anything not exceeding 2.74), since then it will not change the
lower fourth.

e. Sincenisnow even, the lower half consists of the smallest 9 observations and the upper
half consists of the largest 9. With the lower fourth = 2.74 and the upper fourth = 3.93,

f =119,

25
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a. Thelower half of thedataset: 4.4 16.4 22.2 30.0 33.1 36.6, whose median, and

22.2+30.0

therefore, the lower quartile, is ¥+ 26.1.

The top half of thedataset: 36.6 40.4 66.7 73.7 81.5 109.9, whose median, and
(66.7+73.7)

=70.2.

therefore, the upper quartile, is

S0, the IQR = (70.2— 26.1) = 4.1

A boxplot (created in Minitab) of this data appears below:

T T T
0 50 100

sheer strength

Thereisaslight posttive skew to the data. The variation seems quite large. There are no
outliers.

An observation would need to be further than 1.5(44.1) = 66.15 units below the lower
quartile [(26.1- 66.15) =- 40.05 units] or above the upper quartile

[(70.2+66.15) =136.35 units] to be classified asamild outlier. Notice that, in this
case, an outlier on the lower side would not be possible since the sheer strength variable
cannot have anegative value.

An extreme outlier would fall (3)44.1) = 132.3 or more units below the lower, or above
the upper quartile. Since the minimum and maximum observationsin the data are 4.4
and 109.9 respectively, we conclude that there are no outliers, of either type, in this data
set.

Not until the value x = 109.9 islowered below 73.7 would there be any change in the

value of the upper quartile. That is, the value x = 109.9 could not be decreased by more
than (109.9 — 73.7) = 36.2 units.
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Lower half of thedataset: 325 325 334 339 356 356 359 359 363 364 364
366 369, whose median, and therefore the lower quartile, is 359 (the 7" observation in
the sorted list).

Thetop half of thedatais370 373 373 374 375 389 392 393 394 397 402
403 424, whose median, and therefore the upper quartileis 392. So, the IQR =392 -
359=33.

1.5(IQR) = 1.5(33) =49.5 and 3(IQR) = 3(33) = 99. Observationsthat are further than
49.5 below the lower quartile (i.e., 359-49.5 = 309.5 or less) or more than 49.5 units
above the upper quartile (greater than 392+49.5 = 441.5) are classified as 'mild' outliers.
'‘Extreme’ outliers would fall 99 or more units below the lower, or above the upper,
quartile. Since the minimum and maximum observationsin the data are 325 and 424, we
conclude that there are no mild outliersin this data (and therefore, no ‘extreme’ outliers
either).

A boxplot (created by Minitab) of this data appears below. Thereisaslight positive
skew to the data, but it is not far from being symmetric. The variation, however, seems
large (the spread 424-325 = 99 is alarge percentage of the median/typical value)

T
320 370 420

Escapetime

d. Not until thevalue x =424 islowered below the upper quartile value of 392 would there

be any change in the value of the upper quartile. That is, the value x = 424 could not be
decreased by more than 424-392 = 32 units.
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56. A boxplot (created in Minitab) of this data appears below.

T T T T T T
0 100 200 300 400 500

aluminum

Thereisasdlight positive skew to thisdata. Thereis one extreme outler (x=511). Even when
removing the outlier, the variation is still moderately large.

57.
a.  15(0R)=15(216.8-196.0) = 31.2 and 3(IQR) = 3(216.8-196.0) = 62.4.
Mild outliers:  observations below 196-31.2 = 164.6 or above 216.8+31.2 = 248,
Extreme outliers: observations below 196-62.4 = 133.6 or above 216.8+62.4 = 279.2. Of
the observations given, 125.8 is an extreme outlier and 250.2 isamild outlier.

b. A boxplot of thisdata appears below. Thereisahit of positive skew to the data but,
except for thetwo outliersidentified in part (a), the variation in the dataisrelatively
small.

120 140 160 180 200 220 240 260

58. The most noticeable feature of the comparative boxplotsis that machine 2's sample values
have considerably more variation than does machine 1' s sample values. However, atypical
value, as measured by the median, seemsto be about the same for the two machines. The
only outlier that existsisfrom machine 1.
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a. ED: median = .4 (the 14" valuein the sorted list of data). Thelower quartile (median of

the lower half of the data, including the median, sincen isodd) is
(.1+.1)/2= .1. Theupper quartileis(2.7+2.8)/2 = 2.75. Therefore,
IQR= 2.75-.1=265.

Non-ED: median = (1.5+1.7)/2 = 1.6. Thelower quartile (median of the lower 25
observations) is.3; the upper quartile (median of the upper half of the data) is 7.9.
Therefore, IQR=7.9-.3=7.6.

ED: mild outliersarelessthan .1 - 1.5(2.65) = -3.875 or greater than 2.75 + 1.5(2.65) =
6.725. Extremeoutliersarelessthan .1 - 3(2.65) = -7.85 or greater than 2.75 + 3(2.65) =
10.7. So, thetwo largest observations (11.7, 21.0) are extreme outliers and the next two
largest values (8.9, 9.2) are mild outliers. There are no outliers at the lower end of the
data.

Non-ED: mild outliers are lessthan .3 - 1.5(7.6) =-11.1 or greater than 7.9 + 1.5(7.6) =
19.3. Notethat there are no mild outliersin the data, hence there can not be any extreme
outliers either.

A comparative boxplot appears below. Theoutliersin the ED dataare clearly visible.
Thereis noticeable positive skewnessin both samples; the Non-Ed data has more
variability then the Ed data; the typical values of the ED datatend to be smaller than
those for the Non-ED data.

Non-ED — A1

T T
o 10 20

Concentration (mg/L)



Chapter 1. Overview and Descriptive Statigtics

60. A comparative boxplot (created in Minitab) of this data appears below.

test — —_— —

cannister — * ~|:|:|~ *

T T T T
5000 6000 7000 8000

burst strength

type

The burst strengths for the test nozzle closure welds are quite different from the burst
strengths of the production canister nozzle welds.

The test welds have much higher burst strengths and the burst strengths are much more
variable.

The production welds have more consistent burst strength and are consistently lower than the
test welds. The production welds data does contain 2 outliers.

61. Outliers occur inthe 6 am. data. The distributions at the other times are fairly symmetric.
Variability and the 'typical' valuesin the dataincrease alittle at the 12 noon and 2 p.m. times.
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Supplementary Exercises

62.

To somewhat simplify the algebra, begin by subtracting 76,000 from the original data. This
transformation will affect each date value and the mean. It will not affect the standard
deviation.

X, =683, x,=1048, y=831

nX =(4)(831) =3,324 so, X, + X, + X, +X, =3,324

and X, +X; = 3,324- X, - X, =1,593 and x3:(1,593- xz)
25 2. (3324)° U

i u

Next, s° =(180)° =& 44
e 3

g H

S0, & X2 =2,859,444 , x? + X2 +x2 + X2 =2,859,444 and
X2 + X2 =2,859,444- xZ +x; =1,294,651

By substituting X; = (1593- X, ) we obtain the equation

x2 +(1,593- x,)* - 1,294,651=0.

xZ - 1593x, +621,499=0

Evaluating for X, we obtain X, =682.8635 and X, =1,593- 682.8635=910.1365.
Thus, X, =76,683 X, =76,910.
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Flow Lower  Upper

rate Median quartile quartile IQR 15(IQR) 3(IQR)
125 3.1 2.7 3.8 11 1.65 3
160 4.4 4.2 4.9 7 105 1
200 3.8 34 4.6 1.2 180 36

There are no outliersin the three data sets. However, as the comparative boxplot below
shows, the three data sets differ with respect to their central values (the medians are different)
and the datafor flow rate 160 is somewhat |ess variable than the other data sets. Flow rates
125 and 200 a so exhibit asmall degree of positive skewness.

Flow rate

200 — —| | |_
os o ] -

T
3 4 5

Uniformity (26)

32



Chapter 1. Overview and Descriptive Statigtics

A stem=ones
17 |eaf=tenths

© 00 N O

10| 12667789
11 | 122499
12| 2

13|11

X =9.9556,X =10.6
s=1.7594

n=27

f,=23

8.85- (1.5)(2.3) =54
11.15+ (1.5)(2.3) =14.6

lower fourth = 8.85, upper fourth = 11.15

no outliers

T T T T T T T T
6 7 8 9 10 11 12 13

Radiation

There are no outliers. Thedistribution is skewed to the | eft.
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HCdatar & x° =261842 and § X = 9658,
i i

s0 5% =[2618.42 - (96.8)%/4)/3 = 91.953

and the sample standard deviation is s=9.59.

COdata § x° =145645and § X =735, 505> = [145645 - (735)%/4]/3 =
i i

3529.583 and the sampl e standard deviationis s=59.41.

The mean of the HC dataiis 96.8/4 = 24.2; the mean of the CO datais 735/4 =
183.75. Therefore, the coefficient of variation of the HC datais 9.59/24.2 = .3963,

or 39.63%. The coefficient of variation of the CO datais 59.41/183.75 = .3233, or
32.33%. Thus, even though the CO data has alarger standard deviation than does
the HC data, it actually exhibitsless variability (in percentage terms) around its
average than does the HC data.

The histogram appears below. A representative value for this datawould be x = 90.
The histogram is reasonably symmetric, unimodal, and somewhat bell-shaped. The
variation in the datais not small since the spread of the data (99-81 = 18) constitutes
about 20% of the typical value of 90.

Relative frequency

T ) T T ) T T T T T
81 83 85 87 89 91 93 95 97 99

Fracture strength (MPa)

The proportion of the observationsthat are at least 85is 1 - (6+7)/169 = .9231. The
proportion lessthan 95is 1 - (22+13+3)/169 = .7751.

x =90 isthe midpoint of the class 89-<91, which contains 43 observations (arelative
frequency of 43/169 = .2544. Therefore about half of this frequency, .1272, should
be added to the relative frequencies for the classes to the left of x =90. That is, the
approximate proportion of observationsthat are lessthan 90 is.0355 + .0414 + .1006
+.1775+ 1272 = 4822.
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67.
a x =163.2
1002 Btrimmedmean = 2232285156 _ 15 44
eldog 13
100?3 Sy rirmegimeen < 1632 85- 88-166-137 _
el5g 11
\ L00)BLO+ L (10022 0= 1008‘337- 10%trimmedmean
2 elsSg 2 el5g €l0g
= 1(10.70)+1(10.60) = 10.65
2 2
68.
[¢]
d a d o o}
f Y= =-2a (x-¢)=0P g (x-¢)=0
. WAk dx-or @ a
p [¢} [¢} _ [¢} _ _ 9 _ é_ )(| _ =
ax-ac=0P gx-nc=0pP nc=g x b C—T—X.
b. & (x- X)issmallerthang (x - m)’.
69.
a
- +b +b
godv_alx+b)_aax+b_ .
n n n
Si:é(yi-v)zzé(awb- ax+b))° _ g (ax - ax)’
n-1 n- n-1
— aza (Xi - )_()2 = a%g?
n-1
b.
x=C, y=°F

y= 9(87 3)+32=189.14

s, = f = /35044 =1.872
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Oxygen Consumption

° ‘

T T
Treadmill Weight
Exercise Type

Thereisasignificant differencein the variability of the two samples. The weight training
produced much higher oxygen consumption, on average, than the treadmill exercise,
with the median consumptions being approximately 20 and 11 liters, respectively.

Subtracting they from the x for each subject, the differencesare 3.3, 9.1, 10.4, 9.1, 6.2,
25,22,84,87,144,25,-2.8,-04,5.0,and 11.5.

T T T T
0 5 10 15

Difference

The majority of the differences are positive, which suggests that the weight training
produced higher oxygen consumption for most subjects. The median differenceis about 6
liters.
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71.

a.  Themean, median, and trimmed mean are virtually identical, which suggests symmetry.

If there are outliers, they are balanced. The range of valuesisonly 25.5, but half of the
values are between 132.95 and 138.25.

150 —

140

strength

130 —

x

120 —

Theboxplot also displays the symmetry, and adds a visual of the outliers, two on the
lower end, and one on the upper.
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72. A table of summary statistics, astem and leaf display, and a comparative boxplot are below.
The healthy individuals have higher receptor binding measure on average than the individuals
with PTSD. Thereisalso morevariationin the healthy individuals' values. The distribution
of valuesfor the healthy isreasonably symmetric, while the distribution for the PTSD
individualsis negatively skewed. The box plot indicates that there are no outliers, and
confirms the above comments regarding symmetry and skewness.

PTSD Healthy 1]0 stem = tens
Mean | 32.92 52.23 3|2 |058 leaf = ones
Median 37 51 9| 3 | 1578899
Std Dev 9.93 14.86
Min 10 23 7310 | 4 | 26
Max | 46 72 8115
9763 | 6
217
PTSD —
K%
©
=]
S
=
©
k=
Healthy — —_— —
I I I I I I I
10 20 30 40 50 60 70
Receptor Binding
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73.
0.7|8 stem=tenths

0.8]11556 |eaf=hundredths
0.9 2233335566
1.0/0566

X =.9255,5 =.0809, X =.93
lowerfourth = .855,upperfourth =.96

T T T
0.8 0.9 1.0

Cadence
The data appears to be a bit skewed toward smaller values (negatively skewed).
There are no outliers. The mean and the median are closein value.
74.

a Mode = .93. It occursfour timesin the data set.

b. The Modal Category isthe one in which the most observations occur.
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a.  Themedian isthe same (371) in each plot and al three data sets are very symmetric. In
addition, all three have the same minimum value (350) and same maximum value (392).
Moreover, al three data sets have the same lower (364) and upper quartiles (378). So, all
three boxplots will beidentical.

b. A comparative dotplot is shown below. These graphs show that there are differencesin
the variability of the three data sets. They also show differencesin the way the values are
distributed in the three data sets.

+ + + + + +- Typel

----- + + + + + +- Type 2
_____ + + + + + +- Type 3

3520 3600 3680 3760 3840 3920

c. Theboxplotin (a) isnot capable of detecting the differences among the data sets. The
primary reason is that boxplots give up some detail in describing data because they use
only 5 summary numbers for comparing datasets. Note: The definition of lower and
upper quartile used in thistext is slightly different than the one used by some other
authors (and software packages). Technically speaking, the median of the lower half of
the datais not really the first quartile, although it is generally very close. Instead, the
medians of the lower and upper halves of the data are often called the lower and upper
hinges. Our boxplots use the lower and upper hinges to define the spread of the middle
50% of the data, but other authors sometimes use the actual quartilesfor this purpose.
The differenceisusually very slight, usually unnoticeable, but not always. For example
in the data sets of this exercise, a comparative boxplot based on the actual quartiles (as
computed by Minitab) is shown below. The graph shows substantially the same type of
information as those described in (@) except the graphs based on quartiles are able to
detect the slight differences in variation between the three data sets.

Type of wire

T T T
350 360 370 380 390
MPa
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The measures that are sensitive to outliersare: the mean and the midrange. The mean is
sensitive because all values are used in computing it. The midrange is sensitive because it
uses only the most extreme valuesin its computation.

The median, the trimmed mean, and the midhinge are not sensitive to outliers.

The median is the most resistant to outliers because it uses only the middle value (or values)
in its computation.

The trimmed mean is somewhat resistant to outliers. The larger the trimming percentage, the
more resistant the trimmed mean becomes.

The midhinge, which uses the quartiles, is reasonably resistant to outliers because both
quartiles are resistant to outliers.

2355566777888
0000135555
00257

stem: ones
leaf: tenths

O© O ~N O AD WD E O
£g 5

5
Bwoooa

L

0245
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Interval Freguency Rd. Freg. Density
0-<2 23 500 250
2-<4 9 196 .098
4-<6 7 152 076
6-<10 4 .087 022
10<20 1 022 .002
20-<30 2 043 .004
025 ——
020 —
> 015 —
‘n
c
8 o010
005 —
000 —
| | | | | | |
0 2 46 10 20 30
Repair Time

a  Sincetheconstant X issubtracted from each x valueto obtain eachy value, and

addition or subtraction of aconstant doesn’t affect variability, sf, = Si and S, =S,

b. Let c=1/s, wheresisthe sample standard deviation of the x’sand also (by a) of they’s.
Thens,=csy = (1/s)s=1, and s, =1. Thatis, the“standardized” quantities z, ... , z,
have a sample variance and standard deviation of 1.

4?2
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' g _ _ %+ x,]
= Xy = NX, + X4y, SOXpyy = ———n
e.l X Ia:i X 1 Xn+1 1 (n+1)

n+l n+l

I"|S§+1 = é (X| - )_(n+1)2 :é Xiz - (n+1))_(nz+1
i=1 i=l

= é Xi2 - nif +X§+1+n)_(nz - (n+1))_(n2+1
i=1
= (n- D +{x¢, + %2 - (n+DX,}

When the expression for X,,,, from ais substituted, the expression in braces simplifies to

r](Xn+1 - )_(n)z

the following, as desired:

(n+1
% = 15(1258) +118 _ 2005 _ . .,
16
- IEVAY i 5
§a =0 s Boa X)W g0, AL 1259
(n+1) 15 (16)

=.245+.038 =.238. So the standard deviation S,,; =+/.238 =.532
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Bus Route Length

0.06 — ]
0.05 — T
0.04 — __
§ 0.03 —
fa
0.02 —
0.01 —H
0.00 —H
T T T T T
5 15 25 35 45
length
16 s
Proportion lessthan 20= 8@?_9: .552
@39 g
0 s
Proportion at least 30 2864—2:.102
2391 g

First compute (.90)(391 + 1) = 352.8. Thus, the 90" percentile should be about the 352"
ordered value. The 351% ordered valueliesin theinterval 28 - < 30. The352™ ordered
valueliesin theinterval 30 - < 35. Thereare 27 valuesin theinterval 30 - < 35. Wedo
not know how these values are distributed, however, the smallest value (i.e., the 352"
valuein the data set) cannot be smaller than 30. So, the 90" percentile isroughly 30.

First compute (.50)(391 + 1) = 196. Thusthe median (50" percentile) should be the 196
ordered value. The 174" ordered value liesin the interval 16-<18. Thenext 42
observation lieintheinterval 18 - < 20. So, ordered observation 175to 216 lieinthe
intervals 18 - < 20. The 196" observation is about in the middle of these. Thus, we
would say, the median is roughly 19.

Assuming that the histogram is unimodal, then there is evidence of positive skewnessin the
data since the median lies to the left of the mean (for a symmetric distribution, the mean and
median would coincide). For more evidence of skewness, compare the distances of the 5th
and 95th percentiles from the median: median - 5th percentile = 500 - 400 =100 while 95th
percentile -median = 720 - 500 = 220. Thus, the largest 5% of the values (above the 95th
percentile) are further from the median than are the lowest 5%. The same skewnessis evident
when comparing the 10th and 90th percentiles to the median: median - 10th percentile = 500 -
430 =70 while 90th percentile -median = 640 - 500 = 140. Finally, note that the largest

value (925) is much further from the median (925-500 = 425) than is the smallest value (500 -
220 = 280), again an indication of positive skewness.
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Thereis some evidence of acyclical pattern.

60 —

.
50 — - v . . v

Temperature

40 —|

Index 5 10

X, = .1x, +.9% = (.1)(54) +(.9)(47) = 47.7
X, =.1x, +.9%, = (.1)(53) +(.9)(47.7) = 48.23 » 48.2,€tc.

—

xfora=.1 Xfora=.5

1 47.0 47.0
2 47.7 50.5
3 482 51.8
4 484 50.9
5 482 484
6 480 47.2
7 479 471
8 481 48.6
9 484 498
10 485 499
11 48.3 47.9
12 48.6 50.0
13 48.8 50.0
14 48.9 50.0

a=.1 gives asmoother series.
Z =ax +(1' a))_<t—l
=ax +(1' a)[axt-l"'(l' a)X-z]
=ax +a(1‘ a)xt-l+(1- a)z[axt-z +(1‘ a)X-s]
=..=ax +a(l- a)x +a(l- a)’x ,+..+a(l-a) *x+(1-a)"'x

Thus, (x bar); depends on x; and all previousvalues. Ask increases, the coefficient on x.
k decreases (further back in timeimplieslessweight).

Not very sensitive, since (1-a)"™" will be very small.

45



83.

Chapter 1. Overview and Descriptive Statigtics

When there is perfect symmetry, the smallest observation y; and the largest

observationy, will be equidistant from the median, so Y, - X =X- Y, .
Similarly, the second smallest and second largest will be equidistant from

themedian,so y, ;- X=X- Y,

and so on. Thus, thefirst and second numbersin each pair will be equal, so that

each point in the plot will fall exactly on the 45 degree line. When the datais

positively skewed, y, will be much further from the median thanisyq, so Y, - X

will considerably exceed X - Y, and the point (Y, - X,X- ;) will fal

considerably below the 45 degreeline. A similar comment apliesto other pointsin
the plot.

Thefirst pointinthe plot is (2745.6 — 221.6, 221.6 0- 4.1) = (2524.0, 217.5). The
othersare: (1476.2, 213.9), (1434.4, 204.1), ( 756.4, 190.2), ( 481.8, 188.9), ( 267.5,
181.0), (2084, 129.2), (1125, 106.3), ( 81.2, 103.3), ( 53.1, 102.6), ( 53.1, 92.0),

(33.4, 23.0), and (20.9, 20.9). Thefirst number in each of thefirst seven pairs
greatly exceed the second number, so each point falls well below the 45 degreeline.
A substantial positive skew (stretched upper tail) isindicated.



CHAPTER 2

Section 2.1

a  S={ 1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214,
3241, 4213, 4231}

b. Event A containsthe outcomeswhere 1isfirst inthelist:
A ={1324,1342, 1423, 1432}

c. Event B containsthe outcomeswhere 2 isfirst or second:
B ={ 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231 }

d. The compound event A E B contains the outcomesin A or B or both:
AEB ={1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}

a EventA={RRR,LLL,SSS}
b. EventB={RLS RSL,LRS LSR SRL,SLR}
c. EventC={RRL, RRS RLR RSR LRR, SRR}

d. EvetD={RRL,RRS RLR,RSR LRR, SRR,LLR,LLS LRL,LS.,RLL, SLL, SSR,
SSL, SRS, SLS, RSS, LSS}

e. Event D¢contains outcomeswhere all cars go the same direction, or they all go different
directions:
D¢={ RRR,LLL,SSS RLS RS,LRS LSR,SRL,SLR}

Because Event D totally encloses Event C, the compound event CED = D:
CED={RRL,RRS RLR,RSR,LRR, SRR, LLR, LLS,LRL,LS.,RLL,SLL, SSR,
SSL, SRS, SLS RSS, LSS}

Using similar reasoning, we see that the compound event CCD =C:
CCD ={ RRL,RRS RLR,RSR,LRR, SRR}

a7
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Event A ={ SSF, SFS, FSS}
Event B = { SSS, SSF, SFS, FSS}

For Event C, the system must have component 1 working ( Sin thefirst position), then at
least one of the other two components must work (at least one Sin the 2" and 3"
positions: Event C ={ SSS, SSF, SFS}

Event C¢={ SFF, FSS, FSF, FFS, FFF}
Event AEC={ SSS, SSF, SFS, FSS}
Event ACC ={ SSF, SFS}
Event BE C ={ SSS, SSF, SFS, FSS}
Event BCC ={ SSSSSF, SFS}

Home Mortgage Number
Outcome 1 2 3 4
1 F F F F
2 F F F \%
3 F F \Y, F
4 F F \Y, \%
5 F Y F F
6 F V F \%
7 F Y V F
8 F Y V \%
9 V F F F
10 V F F Vv
1 Vv F V F
120V F \Y, \Y
13 Vv vV F F
4 Vv vV F \%
15 Vv V \Y, F
16 V Y \Y, \%

Outcome numbers 2, 3,5,9
Outcome numbers 1, 16
Outcomenumbers 1, 2, 3,5,9

In words, the UNION described is the event that either all of the mortgages are variable,
or that at most al of them are variable: outcomes 1,2,3,5,9,16. TheINTERSECTION
described isthe event that all of the mortgages are fixed: outcome 1.

The UNION described is the event that either exactly three are fixed, or that all four are
the same: outcomes 1, 2, 3,5, 9, 16. The INTERSECTION in wordsisthe event that
exactly three are fixed AND that all four are the same. This cannot happen. (There are no
outcomesin common) : bC c= /A&
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a
Outcome
Number | Outcome
1 111
2 112
3 113
4 121
5 122
6 123
7 131
8 132
9 133
10 211
11 212
12 213
13 221
14 222
15 223
16 231
17 232
18 233
19 311
20 312
21 313
22 321
23 322
24 323
25 331
26 332
27 333

b. OutcomeNumbers1, 14, 27
c. Outcome Numbers6, 8, 12, 16, 20, 22

d. OutcomeNumbersl, 3,7,9,19, 21, 25, 27
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Outcome
Number | Outcome

1 123
2 124
3 125
4 213
5 214
6 215
7 13

8 14
9 15
10 23
11 24
12 25
13 3

14 4

15 5

Outcomes 13, 14, 15
Outcomes 3,6, 9,12, 15

Outcomes 10, 11, 12, 13, 14, 15

S={BBBAAAA,BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA,
BABABAA, BABAABA, BABAAAB, BAABBAA, BAABABA, BAABAAB,
BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA, ABBAABA,
ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB,
ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB,
AABAABB, AAABBBA, AAABBAB, AAABABB, AAAABBB}

{AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB}
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d. (A1CACAZ;QE (A1CCACAZQE (ALGC AL (C Asg)

FS

@

e A1E (A2CAy)

52
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a. Inthediagram on the left, the shaded areais (AEB)¢ On theright, the shaded areaisA¢

the striped areais B¢, and the intersection A ¢C B¢occurs where there is BOTH shading
and stripes. These two diagrams display the same area.

b. Inthediagram below, the shaded arearepresents (A CB)¢ Using the diagram on the right

above, theunion of Ac¢and Beisrepresented by the areas that have either shading or
stripes or both. Both of the diagrams display the same area.

10.

a. A ={Chev, Pont, Buick}, B ={Ford, Merc}, C = {Plym, Chrys} are three mutually
exclusive events.

b. No, let E={Chev, Pont}, F={Pont, Buick}, G = {Buick, Ford}. These events are not
mutually exclusive (e.g. E and F have an outcome in common), yet thereis no outcome
common to all three events.
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Section 2.2

11.
a .07

b. .15+.10+.05=.30

c. Letevent A = selected customer owns stocks. Then the probability that a selected
customer does not own a stock can be represented by
PA®=1-PA)=1-(18+.25)=1-.43=.57. Thiscould also have been done easily
by adding the probabilities of the funds that are not stocks.

12.

a PAEB)=50+.40-.25=.65

b. P(AE B)t=1-.65=.35

c. ACB¢;PACBY=PA)-PACB)=.50-.25=.25
13.

a. awarded either #1 or #2 (or both):
PALE A))=PA1) +PAy)-PALCAy)=.22+.25-11=.36

b. awarded neither #1 or #2: .
P(A1¢Q Azq) = P[(A]_ E Az) q =1- P(Al E Az)zl- 36=.64

c. awarded at least one of #1, #2, #3:
PALE Az E Ag)=P(A1) + P(A2) + P(A3) - P(A1 C Ag) - P(A1 C Ag) -
P(A2CA3)+PA1C A C Ag)
=.2+25+.28-.11-.05-.07+.01= .53
d. awarded none of the three projects:

P(A16C A,CC Ast)=1— P(awarded at least one) = 1 - 53= .47,

e. awarded #3 but neither #1 nor #2:
P(A1CC A¢C A3z)=P(A3)-P(A1 C A3)—PA>C Az)

+PA1C A C Aj)
=.28-.05-.0/+.01 =.17

=
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either (neither #1 nor #2) or #3:
P[(A1¢C A,¢) E As] = P(shaded region) = P(awarded none) + P(A 3)
= A47+.28=.75

A

AL

o

Alternatively, answersto a— f can be obtained from probabilities on the accompanying

A
£
o
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14.
a P(AEB)=PA)+PB)-PACB),
s0 P(A C B) = P(A) + P(B) - P(A E B)
=8+7-9=56

b. P(shaded region) = P(AE B)-P(AC B)=.9-.6=.3
Shaded region = event of interest = (A C B§ E (A¢C B)

15.

a. Letevent E bethe event that at most one purchases an electric dryer. Then E¢is the event
that at least two purchase electric dryers.

P(E)=1—P(E)=1- 428 =572

b. Letevent A betheevent that all five purchase gas. Let event B be the event that all five
purchase electric. All other possible outcomes are those in which at least one of each
typeispurchased. Thus, the desired probability =

1-P(A)-PB)=1-.116-.005=.879

16.
a. Therearesix simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD,
and PDC. The probability assigned to eachis ¢.

b. P(Cranked firs) = P({CPD,CDP} )= 1 +1 =2 =333

c. P(Crankedfirstand D last) = P({CPD}) = %



17.

18.

19.

20.
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a. The probabilities do not add to 1 because there are other software packages besides SPSS
and SA S for which requests could be made.

b. PAG=1-PA)=1-.30=.70

c. PAE B)=PA)+PB)=.30+.50=.80
(since A and B are mutually exclusive events)

d. P(ACC Bf=P[(AE B)q (DeMorgan'slaw)
=1-P(A E B)
=1-.80=.20

This situation requires the complement concept. The only way for the desired event NOT to
happenisif a75W bulbis selected first. Let event A bethat a75W bulb is selected first,

and P(A) = 3. Then the desired event isevent A
SoPAG=1-PA)=1- £ =2=60

15 15

Let event A be that the sel ected joint was found defective by inspector A. P(A) = 555 . Let

event B be analogous for inspector B. P(B) = 13055 Compound event AEB is the event that

the sel ected joint was found defective by at least one of the two inspectors. P(AEB) = 75555 -

a.  Thedesired event is (A E B)¢; so we use the complement rule:
PAEB)¢=1- P(AEB) =1- 15505 = 10005 = 8841

b. ThedesiredeventisBC A¢ PBC A® =PB)- P(A C B).

P(A G B) =P(A) + P(B) - MAEB),
= 0724+ 0751 - .1159 = 0316

SoPBCAG=PFB)-PACB)
=.0751- .0316 = .0435

Let S1, S2 and S3 represent the swing and night shifts, respectively. Let C1 and C2 represent
the unsafe conditions and unrelated to conditions, respectively.

a. Thesmpleeventsare{S1,C1}, {S1,C2}, { S2,C1}, { S2,C2} {S3,C1}, {S3,C2}.

b. P{C1})=P{SL1C1}{S2,C1} {S3C1})=.10+.08 +.05=.23

c. P{SL}¢=1-PESLC1},{S1,C2})=1—(.10+.35) =55

57
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22.

23.

Assume that the computers are numbered 1 — 6 as described. Also assume that computers 1

Chapter 2: Probability

P{M,H}) = .10

P(low auto) = P[{(L,N}, (L.L), (L,M), (L,H)}] =.04+.06 + .05+ .03 =.18 Following a
similar pattern, P(low homeowner's) =.06 + .10 + .03 =.19

P(same deductiblefor both) = P[{ LL, MM, HH}]=.06 +.20+.15= 41
P(deductibles are different) = 1 — P(same deductibles) = 1 - .41 = .59

P(at least one low deductible) = P[{ LN, LL, LM, LH, ML, HL }]
=.04+.06+.05+.03+.10+.03=.31

P(neither low) =1 — P(at least onelow) =1 - .31=.69

PA1C A2 =P(A1) +P(Ay)-PALE Ap)=4+5-6=3
PAA1C A0 =P(A1)-P(A1CAz)=4-3=1

P(exactly one) = P(A1 E A,)-P(A; C Ay)=.6-.3=.3

and 2 arethe laptops. Possible outcomesare (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6)
(34) (3,5 (3,6) (4,5 (4,6) and (5,6).

a

P(both are laptops) = P[{ (1,2)}] = +-=.067

P(both are desktops) = PI{ (34) (3,5) (3,6) (4,5) (46) (5,6)}] = & = 40

P(at least one desktop) = 1 — P(no desktops)
=1- P(both are laptops)
=1-.067=.933

P(at least one of each type) = 1 — P(both are the same)
= 1—P(both |aptops) — P(both desktops)
=1-.067-.40=.533
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25.
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Since A is contained in B, then B can be written as the union of A and
(B C A®, two mutually exclusive events. (See diagram).

@ )
From Axiom 3, PIAE (B C A®] =P(A) + P(B C Ad). Substituting P(B),
PB)=PA)+PBC AQorPB)-PA)=PBC AQ. FromAxiom1,

PBC AQ3 0,s0P(B)3 P(A) or P(A) £ P(B). For general events A and B, P(A C B) £ P(A),
and P(A E B)3 P(A).

P(A C B) = P(A) + P(B) - (AEB) = .65

P(A C C)=.55, P(BC C)=.60

P(ACBC C)=PAE BE C)-P(A) - P(B) - P(C)
+PACB)+PACC)+PBC C)

98-.7- 8- .75+ .65+ .55+ .60

53

a. P(AE BE C)=.98, asgiven.
b. P(noneselected)=1-P(AEBE C)=1-.98=.02
c. P(only automatic transmission selected) = .03 from the Venn Diagram

d. P(exactly oneof thethree) =.03+.08 +.13=.24

59
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27.

28.

Chapter 2: Probability

P(Alq):l—P(Al):].'.lZ:.SS
P(A1CA)=PA)+PA,)-PALE Ay)=.12+.07-.13= 06

P(AlgAZCASG):P(Al(;Az)' P(A1CA2QA3):.06-.01:.05

d. P(at mosttwo errors) =1—P(all threetypes)
=1-PA1CA2CA3)
=1-.01=.99

Outcomes: (A,B) (A,C) (A,Cy) (AF) (BA) (B,C)) BC) (BF

(C1,A) (C1,B) (C1,C) (C1,F) (C2,A) (C2,B) (C2,Cy) (CoF)
(FA) (FB) (FC1) (FCp)

Pl(AB)or(BA)=4%=+=.1
P(atleastoneC)= & =L =7
P(at least 15 years) = 1 — P(at most 14 years)

=1-PF[(3,6) or (6,3) or (3,7) or (7,3) or (3,10) or (10,3) or (6,7) or (7,6)]
=1- £=1- 4=6

There are 27 equally likely outcomes.

a

b.

P(al thesame) = P{(1,1,1) or (222 or (333)] = = = &

P(at most 2 are assigned to the same station) = 1 — P(all 3 are the same)

Pl different) = [{(1,2,3) (1,3,2) (21,3) (23,1) (3,1,2) (321)}]
-6 —2

27 9
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Section 2.3

29.
a.  (5)(4) =20 (5choicesfor president, 4 remain for vice president)

b.  (5)#)(3)=60

a0 b5l S .
C. +=——=10 (Noordering isimplied in the choice)
€22 a3
30.
a. Because order isimportant, we'll use Pg 3= 8(7)(6) = 336.
b. Order doesn’'t matter here, so we use Czp =593,775.
B0 200 2820
c. From each group we choose 2: g T g T g £=83160
2p 825 &2
. 83160
d. Thenumerator comes from part ¢ and the denominator from part b; —— =.
593,775
e.  We usethe same denominator asin part d. We can have all zinfandel, all merlot, or all
cabernet, so P(all same) = P(al z) + P(al m) + P(all c) =
280, 8006, B20
=tg =tg =
S6; 565 £65_ 1162 _
2806 593,775
&6 5
31

a  (n)(nz) = (9)(27) =243

b. (ny)(n2)(n3) =(9)(27)(15) = 3645, so such apolicy could be carried out for 3645
successive nights, or approximately 10 years, without repeating exactly the same

program.

61
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33.
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54 3 4=240

1134=12

4 3 3 3=108

#with at least on Sony = total #- # with no Sony = 240 — 108 = 132
_ 132 —

P(at least one Sony) = 55 =.55

P(exactly one Sony) = P(only Sony isreceiver)
+ P(only Sony is CD player)
+ P(only Sony is deck)

_1"33 3+4' 1" 3 3+4' 3731_27+36+36

240 240 240 240
- a3
240
55
200 A a9
€5 520
285 BT6
g 2 g 221190
4g &l g
aBEd 70
P(exactly 4 have cracks) = g4£ 1 2_ 1190 =.022
2250 53130
55
P(at least 4) = P(exactly 4) + P(exactly 5)
aBEATO BEEdT0
- §4£ Lo, gsﬁ 00_ 122+.001=.023
2250 2250
55§55

62
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22086250
aQog‘38,760. P(all from day shift) = 56£0¢= 38,760 _
°5 o450 8,145,060

£6 5

20250 a5@300 &0@S850

P(aIIfrom&ameshift):g 650, §6£0g+§ goz
50

- %59 +
€65 o 565
=.0048 + .0006 + .0000 = .004

P(at |east two shifts represented) = 1 — P(all from same shift)
=1-.0054=.9946

Let A; = day shift unrepresented, A , = swing shift unrepresented, and A 3 = graveyard
shift unrepresented. Thenwewish P(A1E A, E Aj).
P(A 1) = P(day unrepresented) = P(all from swing and graveyard)

250 300 5850
A %’ PA) = E,%;, P(As) = aé ‘g
800
P(A1 G A) = P(all from graveyard) = &5
850
865
B850 5805
P(Al(;As’):iB' p(AZ(;Ag)_g_E" PAL C Ay C A)=0,
50 450

1¥ 65

35259 8509 3659 aéOQ aéSQ a@OQ
565+§65+§65_§66_§65_g65
865 865 £65 £6) 865 865

=.2939 - .0054 = .2885

SOP(AlEAQEAg):




35.

36.

37.

38.
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(o]

There are 10 possible outcomes-- 2; ways to select the positions for B’svotes: BBAAA,
(7]

BABAA, BAABA, BAAAB, ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.

Only thelast two have A ahead of B throughout the vote count. Since the outcomes are

equally likely, the desired probability is % = .20.

a n;=3,n=4n3=5sn;" n, nz3=60runs

b. ni=1, (just onetemperature), n, =2, n3 = 5impliesthat there are 10 such runs.

(o]
Thereare Tways to select the 5 runs. Each catalyst is used in 12 different runs, so the
7]
number of ways of selecting one run from each of these 5 groupsis 12°. Thus the desired
5

probability is 12 =.0456
a®00

855

90
27815,
a  P(sdlecting 2- 75 watt bulbs) = 2_"’: 159 _ 2067
aé59 455
3%
Ao 59 8806
§33+§33+ gfu 4+10+20
b. P(all three are the same) = — = =.0747
2250 455

io:

45060 _ 120 _
C. glglﬁlg_ 455 .2637
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d. Toexamineexactly one, a 75 watt bulb must be chosen first. (6 ways to accomplish this).
To examine exactly two, we must choose another wattagefirst, thena75watt. (9~ 6
ways). Following the pattern, for exactly three, 9~ 8~ 6 ways; for four,9” 8" 7” 6;
forfive, 9” 8" 77 6” 6.

P(examine at least 6 bulbs) = 1 — P(examine 5 or |ess)
=1-P(examineexactly 1 or 2or 3or 4 or 5)
=1-[P(one) + P(two) + ... + P(five)]

é6 9" 6 9°8" 6 9°8° 76 9°"8 76”6 |
=1- xz—+ + + + p
85 15°14 15" 1413 15" 14" 13 12 15" 14" 13" 12" 114

=1-[4+.2571 +.1582 +.0923 + .0503]

=1-.9579=.0421
39.
a.  Wewant to choose al of the 5 cordless, and 5 of the 10 others, to be among thefirst 10
252800
E5k55_ 252

serviced, so the desired probability is =.0839

2450 3003
105
b. Isolating one group, say the cordless phones, we want the other two groups represented in

thelast 5 serviced. So we choose 5 of the 10 others, except that we don’t want to include
the outcomes where the |ast five are all the same.

O P
X
So we have —QS . But we have three groups of phones, so the desired probability is
0
§s5
é&300 _U
3¢ = 20
0 0_320) _ 5498
2850 3003

55

c. Wewant to choose 2 of the 5 cordless, 2 of the 5 cellular, and 2 of the corded phones:

BBy
8282 1000 _ oo
250 5005

865
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If the A’ s are distinguishable from one another, and similarly for theB’s, C'sand D’s,
then there are 12! Possible chain molecules. Six of these are:

A1A2A3B2C3C1D3CD1D2B3By, A 1A 3AB,C3C D3C,D1D2B3B;

A2A1A3B>C3C D3C,D1D2B3B;, A2A3A 1B2C3CD3C,D;1D2B3B;

A3zA1A,B,C3C D3C,D1D2B3B;, AzA LA 1B2C3CD3C,D;1D2B3B;
These 6 (=3!) differ only with respect to ordering of the 3 A’s. In general, groups of 6
chain molecules can be created such that within each group only the ordering of the A’s
isdifferent. When the A subscripts are suppressed, each group of 6 “collapses” into a
singlemolecule (B's, C'sand D’s are still distinguishable). At this point there are

% molecules. Now suppressing subscriptsontheB’s, C'sand D’sin turn gives

ultimately (;2)'4 = 369,600 chain molecules.

Think of the group of 3 A’sasasingle entity, and similarly for theB’s, C's,and D’s.
Then there are 4! Waysto order these entities, and thus 4! Moleculesin whichthe A’sare
contiguous, theB's, C's, and D’sare also. Thus, P(all together) =

-2 =.00006494 .

369.600

P(at least one F among 1% 3) = 1 — P(no F'samong 1% 3)
4" 3 2 24
=1- ——=1- =1- .0714 =.9286
8 7 6 336
An aternative method to cal culate P(no F's among 1% 3)
would be to choose none of the females and 3 of the 4 males, asfollows:

Efescle

S0E35_ 4 _

=— =.0714, obviously producing the same result.

80 56
&35
ot
P(al F'samong 1% 5) = g‘gglg = % =.0714
55

P(orderings are different) = 1 — P(orderings are the same for both semesters)
=1— (# orderings such that the orders are the same each semester)/(total # of
possible orderings for 2 semesters)
87654321
e o e 5 o o o o - 99997520
(87 6543 21) @B 7654321
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43.
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Seats:

£ [N | EN [ ER [N

poepiniey) = 2 4 3 211 _ 4e7
654321 15

P(J& P next to each other) =P(J&Pin1&2)+ ... + P(J&Pin 5&6)
1 1

P(at least one H next to hisW) = 1 — P( no H next to his W)

We count the # of ways of no H next to hisW asfollows:

# if orderings without a H-W pair in seats#1 and 3and no H next to hisw =6*~ 4~ 1* "~ 2*
"1 1=48

*= pair, ¥ =can’t put the mate of seat #2 here or else aH-W pair would bein#5 and 6.

# of orderings without a H-W pair in seats#1 and 3, and noH nexttohisw =6~ 4~ 2" 2~
27 1=192

#= can’t be mate of person in seat #1 or #2.

So, # of seating arrangements with no H next to W = 48 + 192 = 240

240 1
=—,s0
65 4321 3

1 2
P(at least one H next to hisW) =1 - 5 = 5

And P(noH nextto hisW) = =

#of 10 highstraights=4" 4 4 4 4(4-10's,4-9's, €etc)

5
P(10 high straight) = 4 - = 1024 =.000394
3529 2,598,960
5%

5

P(straight) = 10” =.003940 (Multiply by 10 because there are 10 different card

&5
values that could be high: Ace, King, etc.) There are only 40 straight flushes (10 in each suit),
S0

P(straight flush) = 4_0__ =.00001539
6@29
§s55

67
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LB o o _®@n?
&G KO-k (-KIK En- K

The number of subsets of size k = the number of subsets of size n-k, because to each subset of
size k there corresponds exactly one subset of size n-k (the n-k objects not in the subset of

sizek).
Section 2.4
45,
a  P(A)= .106+.141+ 200 = 447, P(C) =.215 + .200 + .065 + .020 = .500 P(A C C) =
.200
b. PAIC) = P(AGC) = 200 =.400. If we know that the individual came from ethnic
P(C) .500
group 3, the probability that he hastype A blood is.40. P(C|A) =
P(ACC) _.200 _ - _
= =.447 . 1f aperson hastype A blood, the probability that heis
P(A) 447

from ethnic group 3is.447

c. Defineevent D ={ethnic group 1 selected}. We are asked for P(D|B§) =
P(BC BY = 200 =.400. P(DCB®=.082 + .106 +.004 = .192, P(B® = 1— P(B) =
P(B9 00 . i . . 192,
1-[.008 +.018 + .065] = .909

46. Let event A bethat the individual ismorethan 6 feet tall. Let event B bethat the individual is
aprofessional basketball player. Then P (A¥%B) = the probability of theindividual being more
than 6 feet tall, knowing that the individual is aprofessional basketball player, and P (BYA) =
the probability of theindividual being a professional basketball player, knowing that the
individual ismorethan 6 feet tall. P (AYB) will belarger. Most professional BB players are
tall, so the probability of an individual in that reduced sample space being more than 6 feet
tall isvery large. The number of individualsthat are pro BB playersissmall in relation to the
# of malesmore than 6 feet tall.
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C,

e}

P(BYA) = m = é =.50
P(A) 50
PB&A) = w = é =.50
P(A) 50
PAYB) = m = E =.6125
P(B) 40
P(A&/B) = w = E =.3875
P(B) 40
P(AYAEB) = PIAG (AE Bl =0 .71692
P(AE B) .65
PAVAL) = PAAGA) _.06_ .50

P(A) .12
.01
P(Al Q A2 (; A31/A1) = E = 0833

We want P[(exactly one) ¥2(at least one)].
P(at least one) =P(ALE ALE Ay
=.12+.07+.05-.06-.03-.02+.01=.14
Also notice that the intersection of the two eventsisjust the 1% event, since “ exactly one”
istotally contained in “at least one.”

04+.01 _

So P[(exactly one) Y2(at |east one)]= =.3571

The pieces of this equation can be found in your answersto exercise 26 (section 2.2):

P(A$|ACA)= P(f}(zgi)@ = % =.833
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Thefirst desired probability is P(both bulbs are 75 watt¥/#t least oneis 75 watt).
P(at least oneis 75watt) =1- P(noneare 75 watt)

290

525__1 36 _ 69

456 105 105

25
Notice that P[(both are 75 watt)C (at least oneis 75 watt)]
260
o5 _ 15
=P(bothare 75 watt) = —— = ——.
50 105
825
15
105 15
So P(both bulbs are 75 watt¥#t least oneis 75 watt) = 105 -2 2174
69 69
105

Second, we want P(same rating“zat least one NOT 75 watt).
P(at least one NOT 75 watt) = 1 — P(both are 75 watt)

15 0
105 105
Now, P[(same rating)C (at least one not 75 watt)] = P(both 40 watt or both 60 watt).
B0 a0
=te =
2y gzb _16
P(both 40 watt or both 60 watt) = =
é59 105
§25
16
. " o105 _ 16 _
Now, the desired conditional probability is 2 ~ 50" 1778
105

a P(M C LSC PR)=.05, directly from the table of probabilities
b. P(M C Pr)=PM,PrLS) + P(M,Pr,SS) = .05+.07=.12
c. P(SS)=sumof 9 probabilitiesin SStable=56, P(LS) =1=.56=.44

d.  P(M) = .08+07+.12+.10+05+.07 = 49
P(Pr) = .02+.07+.07+02+.05+02 = .25
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e. PMISSC P)= PMG SSC¢ Pl): .08 =.533
P(SSC PI) .04+.08+.03
P(SSCM C PI .08
( PesMcpy- PSSCMCPD _

PMCPl)  .08+.10
PILSM P)=1-P(SSM Pl)=1- .444= 556

a  PRfrom1™* C Rfrom2") =PR from 2" |Rfrom 1% ) - P(R from 1%)

= 8. 6 = 436
11 10
b. P(same numbers) = P(both selected balls are the same color)

= P(both red) + P(both green) = .436 +i . i =.581
11 10

Let A, bethe event that #1 failsand A, bethe event that #2 fails. We assumethat P(A 1) =
P(A;) =g and that P(A1 |A,) =P(A;| A1) =r. Then one approach isasfollows:

P(A1C A2)=P(Az|A1) - P(A1)=rq=.01

P(A1E A2)=P(A1 C Az) + P(ALIC Ap) +P(A1 C A9 =rq+2(1-r)q=.07

These two equations give 2g- .01 = .07, fromwhichg=.04 andr = .25. Alternatively, witht

=PAL@C Ax)=PA;C A9, t+.01+t=.07,implyingt=.03 and thus q = .04 without
reference to conditional probability.

vy - PAACB) _ P(B)

(sinceBiscontainedin A, AC B=B)

P(A)  P(A)
-0 0833
.60
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P(Al) =.22, P(Az) =.25, P(Ag) =.28, P(Al Q A2) =.11, P(Aj_ C A3) = .05, P(A2 C A3) =.07,
P(A1CA2C A3)=.01

PAGA) _11_

v ORRAIT TRy T 2
b. PA2C AsYA;) = PA E(Z)Q A = % =.0455
. P E P E
P ia)-TACUEA) FACAIEGGA)
_P(ACA)+P(AGA)-P(ACACA) _15_
P(A) 2

0 PACACAIAEAEA)=CACACA) Ol ;4

P(AEAEA) 53

Thisisthe probability of being awarded all three projects given that at |east one project
was awarded.

271, 21
A B)=P(BIA) P(A)= — ——=.0111
a M )F’(I)F’()4,3 -

[EEN

b. P(two other H’s next to their wives | Jand M together in the middle)
P[(H - W.orW - H)and(J - M.orM - J)and(H - W.orW - H)]
P(J - M.or.M - Jinthemiddle)
412121 16
654321 6
43 2°12°1_48
654321 6

numerator =

denominator =

. 16 _1
so the desired probability = — =—.
48 3
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c. Pl H'snexttoW’'s|J& M together)
=P(al H s next to W’s—including J& M)/P(J& M together)

614121
_ 6l _ 48_2
_51 2/11 4/3/211_240_-
6l

If P(BJA) > P(B), then P(B’|A) < P(B’).

Proof by contradiction.

Assume P(B’|A)3 R(B).

Then 1-P(BJA)3 1-P(B).
-PBIA)® —H(B).

P(BIA) £ P(B).
This contradicts theinitial condition, therefore P(B’|A) < P(B’).

P(ACB), P(ACB) _ P(AGB) +P(AGB) _P(B) _,
P(B) P(B) P(B) P(B)

P(A|B) +P(A¢B) =

P(AEB)GC) _ PI(ACC)E (BCC)]

P(AEB|C) = PC) O
_P(ACC)+P(BCC)- P(ACBCC)
P(C)

=P(AIC) + R(BIC)-P(AC B|C)
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4" .3=12=P(A,CB)=P(A)- P(B| A

35" .6=.21=P(A, G B)

25" 5=.125=P(A, G B)

a PA,CB)=.21

b. P(B)=MA1C B)+PA;C B)+PA;C B)=.455

_P(A,GB) _ .12
~ P(B) 455

P(A,[B) = % = .462 ,P(A3B) = 1- 264 - 462 = 274

c. PAB) = .264

42

haz loc
4

hasnt 28

P(not.disc C hasloc) __ 038
P(hasloc) .03+.42

a. P(notdisc|hasloc) = =.067

P(disc C noloc) _ .28

b. P(disc|noloc) =
P(no.loc) .55

=.509
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P(0 def in sample | O def in batch) = 1

&0
P(0 def in sample | 1 def in baich) = &25

290
P(L def in sample| 1 def inbatch) = $1p
200
825
s

=.200

(0]
PO def in sample | 2 def in batch) = 25
o
€25
22880
P(L def in sample | 2 def in batch) = E12815 55
2805
f25
P(2 def insample| 2 def inbatch) = _ 1 _ 1o,
200
€25

.622

. _ 5
a.  P(Odef inbatch | 0 def in sample) = =.578
b5+.24+.1244
P(1 def in batch | O def in sample) = .24 =.278
5+.24+.1244
1244

P(2 def in batch | O def in sample) = . =.144
5+.24+.1244
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b. P(0definbatch|1def insample) =0

.06
P(1 def in batch | 1 def in sample) = ——— =
.06 +.0712
. _ 0712
P(2 def in batch | 1 def in sample) = ———— =..
.06+.0712
62. Using atree diagram, B = basic, D = deluxe, W = warranty purchase, W' = no warranty

4" 3=12=P(BCW)

4 7=28=P(BCWY
6" .5=.30=P(DCW)

6" .5=.30=P(DC WY

PBCW) _ 12 _.12
PW)  .30+.12 42

=.2857

Wewant P(B|W) =
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PACBCC)=.75" .9  .8=.5400

PBG C)=PACBC O)+PACCBC C)
=5400+.25 .8 .7=.6800

P(C)=P(AC BC C)+P(A¢C B C C) + P(A C BEC C) + P(ACC BEC C)
= 54+045+.14+.015= .74

P(AGBGC) _.54
P(BCC) .68

PABCC) = =.7941
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64.
D4 x 99 = 0396
9« 02 = 0192
a P(+)=.0588
b, Plhasd|+)= 250 = 6735
.0588
c. P(doesn'thaved|-)= ﬂ =.9996
9412
65.

P(satis) = .51
2
mean | satis) = — = .3922
P( | satis) =
P(median | satis) = .2941

P(mode | satis) = .3137
So Mean (and not Mode!) isthe most likely author, while Median is least.
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Defineevents Al, A2, and A3 asflying with airline 1, 2, and 3, respectively. EventsO, 1, and
2are0, 1, and 2 flights are late, respectively. Event DC = the event that the flight to DC is
late, and event LA =the event that the flight to LA islate. Creating atree diagram as
described in the hint, the probabilities of the second generation branches are calculated as

follows. Forthe Al branch, P(OJA1) = PIDCICLA G = AIDCE xP[LAQ = (.7)(.9) = .63,
P(1JA1) = P[(DCICLA) E (DCCLA @] = (.7)(.1) + (.:3)(.9) = .07 + .27 = .34; P(2JA1) =
PIDCCLA] =P[DC] xP[LA] = (.3)(.1) =.03

Follow asimilar pattern for A2 and A3.

From the law of total probability, we know that
M1) =PAICT) + P(AZCL) + PACY)
= (from tree diagram below) .170 + .105 + .09 = .365.

Wewish to find P(A1[1), P(A2]1), and P(A2]1).

PO = 53
| PO a0 - (51039 - 10
PR = 03
PO = 0
| PO et o -
PIEJAZ] = 05
PO = 6
[ PRSI ® g )= (2008 = 0
PIEjA3] = 10
P(AL/1) = P(ALC ] = 170 =.466;
P()  .365
PAZ/1) = P(A2C1 _ .105 = 288
PQ)  .365
PATL) = P(A3C1) _ .090 = 247
PQ)  .365
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PU G F G Cr)=.1260

P(Pr C NFC Cr)= .05

P(Pr C Cr) = .0625 + .05= 1125

P(F G Cr) = .0840 + .1260 + .0625 = .2725
P(Cr) = 5325

R |y PPCCN) _ 1125 _ ) 0
P(Cr) 5325
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Section 2.5

68.

69.

70.

71.

72.

73.

Using the definition, two events A and B are independent if P(A|B) = P(A);
P(A|B) = .6125; P(A) = .50; .6125* .50, so A and B are dependent.

Using the multiplication rule, the events are independent if

P(A C B)=P(A)- P(B);

P(A C B)=.25;P(A) - P(B)=(5)(4)=.2. 251 .2, s0 A and B are dependent.

a. Sincethe events are independent, then A ¢and B¢are independent, too. (see paragraph
below equation 2.7. P(B4A® =. PBY=1-.7=.3

b. P(AE B)=P(A) + P(B) — P(AYP(B) = 4+ .7 + (4)(7) = .82

P(AB(C (AE B)) _ P(AB) _.12 _

c. P(ABYAE B)= - -
P(AE B) P(AE B) .82

P(A1C Ay)=.11 P(A;) - P(A2) =.055. A; and A ; are not independent.
P(A1 C A3)=.05P(A;) - P(A3)=.0616. A; and A 3 are not independent.
P(A, C A3)=.07,P(Ay) - P(A3)=.07. A, and A3 areindependent.

P(A¢C B) =P(B)— P(A C B)=P(B)- P(A) - P(B)=[1-P(A)] - P(B) =P(A®- P(B).
Altemaiively, P(AG|B) =~ A CB) _ P(B)- P(AGB)
P(B) P(B)

_P(B)- P(A):P(B)
P(B)

=1- P(A) = P(AQ).

Using subscriptsto differentiate between the selected individual s,

PO: C Oy) = P(Oy)- P(O;) = (44)(:44) = .1936

P(two individuals match) = P(A;CA,)+P(B;CB,) + P(AB,CAB,) + P(O,C0,)
= 427 + 107 + 08 + 44° = 3816

Let event E be the event that an error was signaled incorrectly. We want P(at |east one
signaled incorrectly) =P(E, E K E ...E Ej) =1-P(E¢C Ex¢C ...C Ejof). P(E)=1-.05
=.95. For 10 independent points, P(E;¢C E¢C ...C E o0 = P(E¢)P(E:S)...P(E1p® so = P(E;
EEE .. .EEQ=1- [95=.401. Similarly, for 25 points, the desired probability is=1 -
[P(EQ]® =1- (.95)*°=.723

81



74.

75.

76.

77.

78.

Chapter 2: Probability

P(no error on any particular question) = .9, so P(no error on any of the 10 questions) =(.9)*° =
.3487. Then P(at least one error) = 1 — (.9)'° = .6513. For preplacing .1, the two probabilities
are (1-p)" and 1 — (1-p)".

Let g denote the probability that arivet is defective.

a.  P(seam need rework) = .20 = 1 — P(seam doesn’t need rework)
=1-P(norivets are defective)
=1-P(1™isn't def C ... C 25" isn’t def)
=1-(1-qg)*° 50.80=(1-q)*°,1—q=(.80)"?°, and thusq =1 -
.99111 = .00889.

b. Thedesired conditionis.10=1—(1-q)%,i.e. (1—q)* = .90, from which q =1 - .99579
=.00421.

P(at least one opens) = 1 — P(none open) = 1 — (.05)° = .99999969
P(at least one failsto open) = 1 = P(all open) = 1 — (.95)° = .2262

Let A1 = older pump fails, A, = newer pump fails, andx = P(A; C Ay). Then P(A1) =.10+X,
P(A2)=.05+x,andXx=P(A; C Az) =P(A1) - P(A2) = (10 + x)( .05+ x) . Theresulting
quadratic equation, x° - .85x +.005 = 0, has roots x = .0059 and x = .8441. Hopefully the
smaller root isthe actual probability of system failure.

P(system works) = P( 1 — 2 worksE 3— 4 works)
=P(1-2works) + P(3—4works) - P(1— 2 worksC 3—4 works)
= P(1 worksE 2 works) + P(3worksC 4 works) —P(1-2) - P(3—4)
= (.9+.9-81) + (.9)(.9) — (.9+.9-.81)(.9)(.9)
=.99+.81-.8019 =.9981
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{12_

i §

Using the hints, let P(A;) = p, and x = p, then P(system lifetime exceedsty) =p? +p®—p*=

2p? — p*=2x— . Now, set thisequal t0.99, or 2x —x¢ =.99p » — 2x +.99=0. Usethe

_ 2% (4)(%9) _2:.2

quadratic formulato solvefor x: = > > =1+.1=90r101

Since the value we want is a probability, and has to be = 1, we use the value of .99.

Event A: { (3, 1)(3,2)(3,3)(34)(3,5)(36) }, P(A) = %;
Event B: { (1,4)(24)(34)(4,4)(54)(6/4) },P(B) =

1.
L
Event C: { (16)25)BA(43(5:2(6,1)}, PO = 1;

Event AGB:{ (34)}; PACB) =

Event AGC:{ (34) }; PACC) = =;

Event BGC: { (34) }; MAGC) = % ;

Event ACBCC:{ (34)}; PIACBCC) = % :

PAYPB)= %5 = 35=PACB)

6 6 36
PAYP(C)= %5 =35 =PIACC)
PE)PC)= § %5 = 35=PBCO)

The events are pairwise independent.

PAYREB) PC)= § % % =315 " 3= PMACBGO)

The events are not mutually independent
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P(both detect the defect) = 1 — P(at least onedoesn’'t) =1-.2=.8

a  P(1* detects C 2" doesn’'t) = P(1% detects) — P(1¥ does C 2" does)

=9-8=1
Similarly, P(1 doesn’t C 2" does) = .1, so P(exactly one does)= .1+.1= .2

b. P(neither detects adefect) = 1 — [P(both do) + P(exactly 1 does)]

=1-[8+2]=0
so P(all 3 escape) = (0)(0)(0) = 0.

P(pass) = .70

a. (.70)(.70)(.70)=.343

b. 1—P(all pass) = 1-.343= 657

c. P(exactly one passes) = (.70)(.30)(.30) + (.30)(.70)(.30) + (.30)(.30)(.70) = .189

d. P(# pass£ 1) = P(0 pass) + P(exactly one passes) = (.3)° +.189 = .216

e. P(3pass|1ormorepass) =

_ P(3.passC 3 1.pass) _ P(3.pass) _ 343
P 1.pass) P(® l.pass) .973

=.353

a. LetD; = detection on 1% fixation, D, = detection on 2" fixation.
P(detection in at most 2 fixations) = P(D;) + P(D1¢C D)
=P(D,) + P(D2| D1¢)P(D,)
=p+p(l-p) =p2-p).

b. DefineDq, D,,...,Dyasina Then P(at most n fixations)

=P(D;) + P(D1¢C D;) + P(D1¢C Do¢C D3) + ...+ P(D1¢C D2¢C ... C Dp1¢C Dy)

=p+p(l-p)+pL-pY +...+pL-p)"*
1- (- p)"° ]
1-@-p" _,. (1- p)

1-1- p)
Alternatively, P(at most n fixations) = 1 — P(at least n+1 arereq’ d)

=p[1+(1-p+@A-py+..+@-p)"]=Pp-

=1— P(no detection in 1% n fixations)

=1—P(D1¢C Dy¢C ... C Dyt)
=1-(1-p)"

c.  P(no detection in 3 fixations) = (1—p)°
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d. P(passesinspection) = P({ not flawed} E {flawed and passes})
= P(not flawed) + P(flawed and passes)
= .9 + P(passes | flawed)- P(flawed) = .9+(1 - p)*(.2)

P(flawed C passed) _ .11- p)°

e. P(flawed | passed) =

P( passed) 9+.11- p)®
3
Forp=.5, P(fla/ved|passed):&=.0137
9+.1(.5)?
a P(A)—&: 02, P(B) = P(A C B) + P(ACC B)
10,000

1999 2000

=P(BJA) P(A) + P(B AG=—"".(2)+——- (.8)=.2
P(BIA) P(A) + P(BIAG P(AQ 9999 (.2 9999 (.8)

P(A C B) =.039984; since P(A C B) * P(A)P(B), the events are not independent.
b. P(A C B)=.04. Very littledifference. Yes.

c. P(A)=P(B)=.2 P(A)P(B) = .04, but (A C B) = P(BIA)P(A) = 1 X2 =.0222, so the
two numbers are quite different.
In a, the sample sizeis small relative to the “ population” size, while hereit is not.

P(system works) = P(1— 2 worksC 3—4—5— 6 worksC 7 works)
=P(1-2works) - P(3—4-5-6works) - P( 7 works)
=(.99) (.9639) (.9) = .8588

With the subsystem in figure 2.14 connected in parallel to this subsystem,

P(system works) = .8588+.927 — (.8588)(.927) = .9897
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86.
a. Forroute#1, P(late) = P(stopped at 2 or 3 or 4 crossings)
= 1— P(stopped at 0 or 1) = 1 —[.9* + 4(.9)*(.1)]
=.0523
For route #2, P(late) = P(stopped at 1 or 2 crossings)
=1-P(stopped at none) =1-.81=.19
thus route #1 should be taken.

P(4crossn g C late)
P(late)

b. P(4crossing route | late) =

(50523  _
" (5)(.0523) + (.5)(.19)

87.

1-p
P(at most 1Lislost) = 1 — P(both | ost)
=1- p2
P(exactly 1 lost) = 2p(1 - p)

P(exactlyl) _2p(1-p)
P(at.mostl) 1-p°?

P(exactly 1|atmost1) =
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Supplementary Exercises

88.

89.

90.

#having at least 1 of the 10 best = 1140 - # of crews having none of 10 best = 1140 -

iy
2901140 120- 1020

2

. 969
P(best will not work) = —— =.85
1140

500
linel) = —— =.333;
A ) 1500

50(500) +.44(400) +.40(600) _ 666 _
1500 1500

P(Crack) =

P(Blemish |line1) = .15

10(500) +.08(400) +.15(600) _ 172

P(Surface Defect) =- =
1500 1500
: .10(500) _ 50
P(line 1 and Surface Defect) = =
1500 1500

50,
So P(line 1 | Surface Defect) = = lfﬂ =.291
1500

The only way he will have one type of forms|eft isif they are all course substitution

forms. He must choose al 6 of the withdrawal formsto passto asubordinate. The
260

desired probability is §6E _

éOg
€65

He can start with the wd forms: W-C-W-C or with the csforms. C-W-C-W:
#ofways.6” 4° 5" 3+4° 6° 3" 5=2(360) =720,
Thetotal #waysto arrangethefour forms: 10° 9° 8" 7=5040.
The desired probability is 720/5040 = .1429

.00476
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P(AEB) = P(A) + P(B) — P(A)P(B)
626 = P(A)+P(B)-.144

So P(A) + P(B) =.770 and P(A)P(B) = .144.

Let x = P(A) and y = P(B), then using the first equation, y = .77 — x, and substituting thisinto
the second eguation, we get x (.77 —x) =.144or

% - .TTx +.144=0. Usethe quadratic formulato solve:

74772 - (4)(.144) _ 7713

2 2
SoP(A) = .45and P(B) = .32

=.32 or .45

a (8)(9)(8) =512

b.

j 032

<
032

/{ 032

B
8
s
ﬁf
8

Sz

.512+,032+.023+.023 = .608

c. P(lsent|1received) = PAsent ¢ k_ecaved) = 4256 =.7835
P(1received 5432
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a. Thereare5 4 3 2 1 =120 possible orderings, so ((BCDEF) = -1~ = .0083

1
120

b. #orderingsinwhichFis39=4 3 1*" 2 1 =24, (* because F must be here), so

dy — 24 —
PF3%)=2=2

43211
120

c. P(Flast)= 2

P(F hasn’t heard after 10 times) = P(not on #1 C not on #2 C...C not on #10)

.10
o

=¢=* = 1074
edg

When three experiments are performed, there are 3 different ways in which detection can
occur on exactly 2 of the experiments: (i) #1 and #2 and not #3 (ii) #1 and not #2 and #3;
(i) not#1 and #2 and #3. If the impurity is present, the probability of exactly 2 detectionsin
three (independent) experimentsis (.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384. If the
impurity is absent, the analogous probability is 3(.1)(.1)(.9) = .027. Thus
P(present | detected in exactly 2 out of 3) =

P(det ected.inexactly.2 C present)

P(det ected.in.exactly.2)
(.384)(.4)

" (384)(4) + (027)(6)

P(exactly 1 selects category #1 | al 3 are different)
_ P(exactly.l.selects#1 C all .aredifferent)
B P(all are.different)
Denominator = 65 4 = > =.5556
666 9

Numerator = 3 P(contestant #1 selects category #1 and the other two select two different
categories)
e 1 5'4:5' 4" 3

666 666

5 47
The desired probability isthen 6 5

Nlw
N |-
I
Ul
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Chapter 2: Probability

a. P(passinspection) = P(passinitially E passes after recrimping) = P(passinitially) + P(
fallsinitialy C goesto recrimping C is corrected after recrimping)
=.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram)

=974
o _ _ P( passed.initially)
b. P(needed no recrimping | passed inspection) = - -
P( passed .inspection)
= ) =.97%4
974

a. P(both +) = P(carrier C both +) + P(not acarrier C both +)
=P(both + | carrier) x P(carrier)
+ P(both + | not acarrier) x P(not acarrier)
= (.90)%(.01) + (.05)%(.99) = .01058
P(both — ) = (.10)%(.01) + (.95)%(.99) = .89358
P(tests agree) = .01058 + .89358 = .90416
. .. 5
b Plcarrier | both + ve) = P(carrier C both !oosmve) _ (.90)°(.01) — 7656
P (both positive) .01058

Let A = 1 functions, B = 2" functions, so P(B) =.9, P(AE B) = .96, P(A C B)=.75. Thus,
P(A E B)=P(A) + P(B) - P(A C B) =P(A) +.9-.75= .96, implying P(A) = .81.
PBCA) _.75 _

ThisgivesP(B | A) =
WSPEIN=—5 N Tl

P(E C late) = P(late| E; )P(E;) = (.02)(:40) = .008
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Chapter 2: Probability

a. Thelaw of total probability gives

3
P(late) = é_ P(late| E; ) xP(E;)
i=1
= (.02)(.40) + (.01)(.50) + (.05)(.10) = .018

b. P(E¢|ontime) =1—P(E; | ontime)

_ 1 P(E, C o.n.time _1. (.98)(.4) — 601
P(ontime .982

Let B denote the event that a component needs rework. Then

3
PB)=a P(B A)xXP(A) = (.05)(.50) + (.08)(.30) + (.10)(.20) = .069

i=1

(05)(50) _

Th A.|B)= 62
us P(A1]B) 069
(.08)(.30) _
A,|B)= ~—2" = 348
P(A2|B) 069
(.10)(.20)
As|B)= ~—2 = 290
P(A3|B) 069
a Pl different) = (365)(364)..(3%6) _ ggs

(365) 10
P(at |east two the same) = 1 - .883=.117

b. P(at least two the same) = .476 for k=22, and = .507 for k=23

c. P(at least two have the same SS number) = 1 — P(all different)
_1- (1000)(999)...(991)

(1000)"
=1-.956=.044

Thus P(at least one “ coincidence”) = P(BD coincidence E SS coincidence)
=.117 + .044 — (.117)(.044) = .156
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Chapter 2: Probability

104.
A3

o e 0625
Rl =R3=R2

A5

523

15
a G|Ri <R, <Ry)= —————— = .67, P(B|R; <R, <R3) = .33, classify as granite.
PG|R <R, <R3) 15+ 075 P(B|R; <R, <R3) yasg

.0625
b. PG|R; <R3<Ry)= —— =.2941 < .05, so classify as basalt.
PG|R1<Rs<Ry) 195 y

.0375
G|R;<R; <R,) = —— =.0667, so classify as basalt.
PG|R3 <Ry <Ry) =625 y

c. P(erroneousclassif) = P(B classif as G) + P(G classif asB)
= P(classif as G | B)P(B) + P(classif asB | G)P(G)
=P(R; <R; <R3 |B)(.75) + PRy <R3 <Ry or R3 <Ry <R, | G)(.25)
=(.10)(.75) + (.25 + .15)(.25) = .175
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Chapter 2: Probability

d. For what valuesof pwill P(G | R;<R,<R3) > .5 P(G|R; <R3 <Ry) > .5,
PG|Rs <R <Ry) > 5?

6p _ .bp . 1
PGIR <R; <Rg) = = > .5 iff p>—=
6p+.21- p) .1+.5p 7
PG|RL<R3<Ry) = -25p >5iffp>il
T 25p+21- p) 9
PG|Rs<R; <Ry) = -15p > 5iff p >E (most restrictive)
YT 15p+.7(1- p) 17

14
If p> E always classify as granite.

P(detection by the end of the nth glimpse) = 1 — P(not detected in 1% n)
=1-P(GtC GC ... C G¢) =1- P(GOPEY ... P(G,Y

=1-(1-p)1-pz) .. A-pn)=1-p(1- P;)

a. P(walkson 4™ pitch) = P(1* 4 pitches are balls) = (.5)* = .0625

b. Pwakson 6™ = P(2 of the 1% 5 are strikes, #6 is aball)
= P(2 of the 1® 5 are strikes)P(#6 is a ball)
=[10(.5)°](5) = .15625

c. P(Batter walks) = P(walks on 4™ + P(walks on 5) + P(walks on 6'™)
=.0625 + .15625 + .15625 = .375
d. P(first batter scoreswhile no oneis out) = P(first 4 batters walk)
=(.375)* = .0198

1 1
a. Pl incorrectroom) = ——— = — =.0417
43 2°1 24
b. The9 outcomeswhich yield incorrect assignments are; 2143, 2341, 2413, 3142, 3412,

_ 9
3421, 4123, 4321, and 4312, so P(all incorrect) = 2 =.375
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a P@Elfull)=P(AC BC C)=(.6)(5)(4)=.12
P(at least oneisn't full) =1— P@l full) =1-.12=.88

b. P(only NY isfull) = P(A C B¢ C C) = P(A)P(BOP(CH = .18
Similarly, P(only Atlantaisfull) = .12 and P(only LA isfull) =.08
So P(exactly onefull) =.18 + .12 + .08 = .38

Note: s= 0 meansthat the very first candidate interviewed ishired. Each entry below isthe
candidate hired for the given policy and outcome.

Outcome s0 s1 s2 s3| Outcome s0 s1 s2 s3
1234 1 4 4 4 3124 3 1 4 4
1243 1 3 3 3 3142 3 1 4 2
1324 1 4 4 4 3214 3 2 1 4
1342 1 2 2 2 3241 3 2 1 1
1423 1 3 3 3 3412 3 1 1 2
1432 1 2 2 2 3421 3 2 2 1
2134 2 1 4 4 4123 4 1 3 3
2143 2 1 3 3 4132 4 1 2 2
2314 2 1 1 4 4213 4 2 1 3
2341 2 1 1 1 4231 4 2 1 1
2413 2 1 1 3 4312 4 3 1 2
2431 2 1 1 1 4321 4 3 2 1

S ‘ 0 1 2 3
P(hire#1) ‘ 6 1 10 6
24 24 24 24

Sos=1isbest.

P(at least one occurs) = 1 — P(none occur)
=1-(1-p1) (1-p2) (1—p3) (1—pas)
=p1P2(1—ps) (1—pa) + ...+ (1—p1) (1 - P2)P3Pa
+(1—pP1) P2P3Pa + ... + P1 P2P3(1— Pa) + P1P2P3P4

P(A 1) = P(draw dlip 1 or 4) = %% P(A ) = P(draw dip 2 or 4) = %%;
P(A3) =P(draw dip3or 4) =%; P(A1 C A,) =P(draw dip 4) =¥
P(A, C A3) =P(draw dip4) =%; P(A; C Az) =P(draw dip4) =Y
Hence P(A1 C A2) = P(A1)P(A2) = %4 P(A2 C Ag) = P(A2)P(Az) = ¥4,
P(A1 C A3z) = P(A1)P(A3) = Y4, thus there exists pairwise independence

P(A1 C A, C A3)=P(draw dip4) =¥ 1 1/8=P(A1)p(A2)P(A3), so the events are not
mutually independent.

A



CHAPTER 3

Section 3.1

S FFF  SFF FSF FFS FSS SFS  SSF SSS

0 1 1 1 2 2 2 3

2. X =1if arandomly selected book is non-fiction and X = O otherwise
X =1if arandomly selected executive isafemale and X = 0 otherwise
X =1if arandomly selected driver has automobile insurance and X = 0 otherwise

3. M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3,
4, or 5; W = 1if the sum of the two resulting numbersis even and W = 0 otherwise, a
Bernoulli random variable.

4, In my perusal of azip codedirectory, | found no 00000, nor did | find any zip codes with four
zeros, afact which was not obvious. Thus possible X valuesare 2, 3,4, 5 (andnot O or 1). X
=5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322.

5. No. Inthe experiment in which acoin istossed repeatedly until aH results, let Y = 1if the
experiment terminates with at most 5 tossesand Y = 0 otherwise. The sample spaceis
infinite, yet Y has only two possible values.

6. Possible X valuesarel, 2, 3, 4, ... (al positive integers)
Outcome: RL AL RAARL RRRRL  AARRL
X: 2 2 5 5 5
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10.

Chapter 3: Discrete Random Variables and Probability Digtributions

a. Possiblevaluesare 0,1, 2, ..., 12; discrete
b. WithN=#onthelist, valuesare0, 1, 2, ... , N; discrete
c. Possiblevaluesarel, 2, 3,4, ... ; discrete

d. {xO<x<¥ } if weassume that arattlesnake can be arbitrarily short or long; not
discrete

e.  With ¢ = amount earned per book sold, possible valuesare 0, c, 2c, 3c, ... , 10,000c;
discrete

f. {y:0<y<14} sinceOisthe smallest possible pH and 14 is the largest possible pH; not
discrete

g. Withmand M denoting the minimum and maximum possible tension, respectively,
possiblevaluesare{ x: m<x <M }; not discrete

h. Possiblevauesare3, 6,9, 12,15, ... -- i.e. 3(1), 3(2), 3(3), 3(4), ...giving afirst
element, etc,; discrete

3:SSS; Y =4 FSSS; Y =5. FFSSS, SFSSS,
6. SSFSSS, SFFSSS, FSFSSS, FFFSSS;,
7: SSFFS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFSFSSS, FFFFSSS

Y
Y
Y

a.  Returnsto 0 can occur only after an even number of tosses; possible Svaluesare 2, 4, 6,
8, ...(i.e. 2(1), 2(2), 2(3), 2(4),...) aninfinite sequence, so X isdiscrete.

b. Now areturnto 0 is possible after any number of tosses greater than 1, so possible values
ae2, 3,4,5, ... (1+1,1+2, 1+3, 1+4, ..., aninfinite sequence) and X is discrete

a. T =total number of pumpsin use at both stations. Possiblevalues: 0, 1, 2, 3,4, 5, 6, 7,
8,910

b. X:-4,-3,-2,-1,0,1,2,3,4,5,6

c. U:0,1,23456

d 2012



Chapter 3: Discrete Random Variables and Probability Digtributions

Section 3.2
11.
a.
X | 4 6 8
P(X) | 45 40 15
b.
0os 4
04
03 -
0z -+
o1 -
oo - I
4 E 8
0
c. Px=6)=.40+.15= 55 P(x>6)=.15
12.

a. Inorder for the flight to accommodate all the ticketed passengers who show up, no more
than 50 can show up. We need y = 50.
P(y=50)=.05+.10+.12+ .14+ .25+ .17=.83

b. Usingtheinformationin a. above, Py >50) =1- P(y=50)=1-.83=.17
c. Foryouto get ontheflight, at most 49 of the ticketed passengers must show up. P(y =

49) = 05+.10+ .12+ .14+ .25 = 66. For the 3" person on the standby list, at most 47
of the ticketed passengers must show up. P(y =44) =.05+.10+.12= 27
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Chapter 3: Discrete Random Variables and Probability Digtributions

P(X £3) = p(0) + p(1) + p(2) + p(3) = .10+.15+.20+.25 = .70
P(X <3)=P(X £2) =p(0) +p(1) + p(2) = 45

PGB £ X) =p(3) + p(4) + p(5) + p(6) = .55

P(2EXES) =p(2) +p(3) +p(4) +p(5) =.71

The number of linesnotinuseis6—X,s06—X =2isequivalenttoX =4,6—-X =3to

X=3,and6—-X =4toX =2. Thuswedesire P( 2 £XE 4) =p(2) + p(3) + p(4) = .65

6—X3 4if6—-43 X,i.e 23 X,or X £2,and P(X £ 2) =.10+.15+.20= 45

5
é P(Yy) =K[1+2+3+4+5=15K=1P K =31
y=1

PY £3)=p(1) +p(2) +p(3) = = = .4
P(2EYE ) =p(2) +p(3) +p(d) = 1= = .6

s 520 1 55
3 e S 1+4+9+16+25 =21 1N
A €505 50 50

(1,2 (1,3) (1,4 (1,5 (2.3) (24) (25) (34) (35) (4,5

P(X =0) = p(0) = PI{ (34) (35) (45} = 3 =.

PX=2=p@=P{(12}=3=.1
PX=1)=p@)=1-[p(0) + p(2)] =.60,andp(x) =0ifx* 0,1, 2

F(O) =P(X £0)=P(X =0)=.30
F(1)=P(X £1)=P(X =00r 1) =.90
FQ) =PX£2)=1

Thec.df.is
| 0 x<0
130  0£x<1
Fx) =i
{90 1£ x<2
{1 2£ X
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Chapter 3: Discrete Random Variables and Probability Digtributions

X Outcomes p(X)

0 FFFF n* =.2401
1 FFFSFFSFFSFF,SFFF 4733 =4116
2  FFSSFSFS,SFFSFSSF,SFSF,SSFF 6[(.7)%(3)?] =2646
3 FSSS, SFSS,SSFS,SSSF 4(ND3° =076
4  SSSS 3* =.0081

40 _|

.30

Relative
Frequency

.20

.10

Insured

p(x) islargestfor X =1

P(X 3 2) =p(2) + p(3) + p(4) = .2646+.0756+.0081 = .3483
This could also be done using the complement.

P(2) = P(Y = 2) = P(1* 2 batteries are acceptable)
= P(AA) = (9)(9) = 81

p(3) = P(Y =3) = P(UAA or AUA) = (.1)(.9)* + (.1)(.9)% = 2[(1)(.9)?] = .162

Thefifth battery must bean A, and one of the first four must also bean A. Thus, p(5) =
P(AUUUA or UAUUA or UUAUA or UUUAA) = 4[(.1)*(.9)] = .00324

P(Y =y) = p(y) = P(they" isan A and so is exactly one of thefirsty — 1)
=(y - (D97, y=2345,...



Chapter 3: Discrete Random Variables and Probability Digtributions

a p)=PM=1)=P(11)]=
p2) =PM =2)=P(12) or 1) or (22)] = =
p3)=PM=3)=P(13)or(23)or (31 or (32 or (33)] = =

Similarly, p4) = &, p(5) = &, and p(6) =1

b. Fm)= Oform<1, & forLEm<2,

i0 m<1
i
0% 1£m<2
1% 2£Em<3

Rm)= |2 3Em<4
i
.I% 4£m<5
2 5£m<6
%1 m3 6

1.0 ———

0.9 —

0.8 —

0.7 — —

0.6 —

0.5 —

0.4 — —

0.3 —

0.2 —

0.1 — —

0.0 - cmml—

Let A denote the type O+ individual ( type O positive blood) and B, C, D, the other 3
individuals. Thenp(1) —P(Y =1) = P(A first) = + = .25

p(2) =P(Y =2) =P(B, C, or D first and A next) =
PA)=P(Y=3)=PAlast) = 33 xt =1 =25
Sop(3) = 1— (.25+.25+.25) = .25

INTRREL

=.25

xl =
3

IN

P(0) = P(Y = 0) = P(both arrive on Wed.) = (.3)(.3) = .09
P(1) = P(Y = 1) = F[(W,Th)or(Th,W)or(Th,Th)]
=(3)(4) + (4)(3) + (4)(4) = .40
P(2) = P(Y =2) = F[(W,F)or(Th,For(F,W) or (F,Th) or (F,F)] =.32
P3)=1-[.09+.40+.32] =.19
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22.

23.

24,

Chapter 3: Discrete Random Variables and Probability Digtributions

Thejumpsin F(x) occuratx =0, 1, 2, 3, 4, 5, and 6, so wefirst calculate F() at each of these

values:
FO)=PX £0)=P(X =0)=.10
F(1) =P(X £1) =p(0) + p(1) = .25
F(2) = P(X £2) =p(0) + p(1) + p(2) = 45
F(3) = .70, F(4) = .90, F(5) = .96, and F(6) = 1.
Thec.df.is
i .00 Xx<0
} 10  0f£ x<1
i .25 1£x<2
! 45  2£x<3
F)= |
i 70 3Ex<4
.90 4£x<5
|
i 96 B5Ex<6
11.00 6 £ X

Then P(X £ 3) = F(3) = .70, P(X < 3) = P(X £ 2) = F(2) = .45,
PBEX)=1-PX£2)=1-F2)=1-.45= 55,
andP(2EX £5)=F(5) - F(1)=.96- .25=.71

P(X =2)=.39-.19= .20
PX>3)=1-.67=.33
PREXE5)=.92-.19=78

PR2<X <5)=.92-.39= 53

Possible X values are those values at which F(x) jumps, and the probability of any
particular value is the size of the jump at that value. Thuswe have:

4 6 12

x
=
w

px) ‘ 30 10 05 15 40

PBE£ X £6)=F(6)— F(3) = .60-.30=.30
PUEX)=1-P(X<4)=1-F4)=1-.40=.60

P(0) =P(Y =0) =P(B fird) =p

P(1) =P(Y = 1) = P(Gfirg, then B) = P(GB) = (1 - p)p

P2) = PY =2) = (GGB) = (1— p)?p

Continuing, p(y) = P(Y=y) = P(y G'sand thenaB) = (1-p)’pfory =0,1,23,...
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Chapter 3: Discrete Random Variables and Probability Digtributions

a. PossibleX valuesarel, 2,3, ...
P(1) = P(X = 1) = P(return home after just one visit) = %
P(2) = P(X = 2) = P(second visit and then return home) = £ %
P(3) = P(X = 3) = P(three visits and then return home) = (3)2 %
In general p(x) = (%)Xl(%) forx=1,23, ...

b. Thenumber of straight line segmentsisY =1 + X (sincethe last segment traversed
retuns Alvieto O), soasin a, p(y) = (%)y 2(%) fory= 23, ...

c. Possiblezvauesare0,1,2,3, ...

p(0) = P(male first and then home) =5 >¢ = <,
p(1) = P(exactly one visit to afemale) = P(female 1%, then home) + P(F, M, home) +
P(M, F, home) + F)?M, F, M, home

= (3)0)+ ()& )y)+ (%)(%)(%)L (2)E)E)E)
=E]%)(1:—§%_X%)+ (%)(%)(%ﬂg(%) _:_(2@(_%)__+ (%)E%)(i)(%)d -

0= ()2 (€)) +e) (). o,
= B8P+ I () = () -2

a. Thesample space consists of all possible permutations of the four numbers1, 2, 3, 4:

outcome y value outcome y value outcome y value
1234 4 2314 1 3412 0
1243 2 2341 0 3421 0
1324 2 2413 0 4132 1
1342 1 2431 1 4123 0
1423 1 3124 1 4213 1
1432 2 3142 0 4231 2
2134 2 3214 2 4312 0
2143 0 3241 1 4321 0

b. Thusp(0)=P(Y =0)= =, p)=PY=1)=2 p@=PY=2=2Z,
P =RY =3 =0,p3) =P(Y =3 = 4.
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Chapter 3: Discrete Random Variables and Probability Digtributions

27, Ifx <%, F(x) =PX £x%) = P({X £x} E { xs <X £})
=P(XE£x)+P(x1 <X E£x%)3 P(XEx)=F(x).
F(x.) = F(x) when P(x; < X £%) =0.

Section 3.3

28.

4
a EX)= é_ X Xp(X)
x=0

=(0)(.08) + (1)(.15) + (2)(.45) + (3)(.27) + (4)(.05) = 2.06

4
b. V(X)= Q (X- 2.06)% xp(X) = (0 206/%(08) + ...+ (4— 2.06)(.05)
x=0

= .339488+.168540+.001620+.238572+.188180 = .9364

c. s=+.9364 =.9677

i .
d. V)= & X2 Xp(x)g- (2.06)%=5.1800— 4.2436 = 9364
=0 u

D

®

®

29.

4
a E(Y)=g yxp(y)=(0)(60)+(1)(:25) + (2(.10) + (3)(.05) = .60

x=0

4
b. E(100¥)= § 100y? xp(y) = (0)(60) + (100)(.25)

x=0
+ (400)(.10) + (900)(.05) = 110
30. E(Y)= 60,
E(Y)=11
V(Y) = E(Y?) - [E(Y)]? = 11— (60)* =.74
s,= .74 = .8602

E(Y)+s,= .60+ 8602 = (-.2602, 1.4602) or ( 0, 1).
P(Y =0) +P(Y =1) = .85
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Chapter 3: Discrete Random Variables and Probability Digtributions

31.
a  E(X)=(135)(.2) + (159)(5) + (19.1)(.3) = 16.38,
E (X?) = (135)%(.2) + (15.9)%(.5) + (19.1)%(:3) = 272.298,
V(X) = 272.298 — (16.38)% = 3.9936

b. E(25X—85)=25E (X)—85=(25)(16.38) — 85=401
c. V(25X —85) =V(25X) = (25)2V(X) = (625)(3.9936) = 2496

d. E[h(X)] =E[X - .01X?] = E(X) - .01E(X?) = 16.38— 2.72 = 1366

32.

1
a Ex)= g x* xp(x)=(@(@-p)+ (@)@ = O/ =p

x=0
b. V(X)=EX*)-[EX)]* = p-p°=p(1-p)

¢ EX®)=(0")1-p+1*)p)=p

¥ ¥ ¥
33. EX)= Q Xxp(X) = Q X X% =cd iz , but it is awell-known result from the theory of
x=1 x=1 x=1
s 1
infinite seriesthat Q — <¥,s0 E(X) isfinite.

x=1

34. Let h(X) denote the net revenue (sales revenue — order cost) as afunction of X. Then hz(X)
and h4(X) arethe net revenue for 3 and 4 copies purchased, respectively. Forx =1or 2,
h3(X) =2x — 3, but at x = 3,4,5,6 the revenue plateaus. Following similar reasoning, h4(X) =
X —4forx=1,2,3, but plateaus at 4 for x = 4,5,6.

X 1 2 3 4 5 6
ha(X) 1 1 3 3 3 3
ha(X) 2 0 2 4 4 4

1 2 3 4 3 2
p(x) is i 15 1 15 i

6
Elhs(X)] = & hy (X) Xp(X) = (1)(&) + ... + (3(Z) = 24667
x=1

6
similarly, E[ns ()] = & h, (X) Xp(X) = (D(&) + ... + (4)(Z ) = 26667

x=1
Ordering 4 copies gives slightly higher revenue, on the average.
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PX) ‘ 8 1 08 02
X 0 1,000 5,000 10,000
HX) 0 500 4,500 9,500

E[h(X)] = 600. Premium should be $100 plus expected value of damage minus deductible or
$700.

s &Aoo aaod 1en(n+l)u n+1
EX)= @ XX—== c—= X =
21 Enﬂ gnéxa—.l n8 2 H 2

8 , Ao adod o len(n+])(2n+1)u (n+D(2n+1)

EX)=q x° X—==¢=1q X
X Ens &ngn Tné 6 H 6
o 2
SOV(X) = (n+1)(2n+1) €¢q+19 _n-1
6 e 2 g 12
E[h(X)] = Egeig—a (i:;é-—gxp(x) ——a — =.408, Whereasi— .286, so you
X 9 =1EeX g x—l X 3 5

expect to win moreif you gamble.

4
EX) = é_ XxXp(X) =23, E(X%)=6.1,0V(X)=6.1-(23)>=.81
x=1

Each lot weighs 5 Ibs, so weight left = 100 — 5x.
Thus the expected weight left is 100 — 5E(X) = 88.5,

and the variance of the weight left is
V(200 — 5X) = V(-5X) = 25V (x) = 20.25.

a. Thelinegraph of the p.m.f. of =X isjust the line graph of the p.m.f. of X reflected about
zero, but both have the same degree of spread about their respective means, suggesting
V(-X) =V(X).

b. Witha=-1,b=0,V(aX +b) = V(-X) = &V(X).

V@ +b)= § [aX +b- E(aX +b)]? xp(x) = § [aX +b- (am+b)]? p(x)

= [aX - (am)]? p(x) =a’§ [X -m? p(x) = a?V(X).
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E[X(X-1)] = E(X?) — E(X), b E(X?) = E[X(X-1)] + E(X) =325
V(X)=325-(5°=75

V(X) = E[X(X-1)] + E(X) — [E(X)]?

Witha=1landb=c, E(X —c)=E(@X +b) = aE(X) +b=E(X)—c. When c=m E(X-n)
= E(X) - m=m- m= 0, so the expected deviation from the mean is zero.

=

= | 25 A1 .06 04 01

6 A 6
m=Q xxp(x) =2.64, s?2= géx ><p(x)LI n’ =2.37,s =154
x=0 ex=0

Thusm-2s =-.44, and m+ 2s =5.72,
s0 P(x-m3 2s) = P(X islat least 2 s.d."sfrom )
=P(x iseither £-44 0r3 572)=P(X =6) =.04
Chebyshev’ s bound of .025 is much too conservative. For K = 3,4,5, and 10, P(|x-n}3

ks) = 0, here again pointing to the very conservative nature of thebound 1 .
k2

m=0andS =%, s0P(pn3 3s)=P(X |3 1)

= P(X =-lor+l)= E % =1 identical to the upper bound.

Letp(-1) = &, p(+1) =&, p(0) = 2.
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Section 3.4
44,
£O 3 5
a b(3;8,.6):g3::(.6) (.4)> =(56)(.00221184) = .124
2

45,

46.

b.

C.

d.

a

b.

C.

d.

e

f.

g.

X ~

a

b.

C.

d.

€.

b(5;8,.6) = gg(ﬁ)f’ (.4)? = (56)(.00497664) = .279
2}
P(3£ X £5) =h(3;8,.6) + b(4;8,.6) + b(5;8,.6) = .635

.
PLEX)=1-P(X=0)=1- ?0 g(-J)"(S)12 =1-(9%=718
g

B(4;10,.3) = .850

b(4;10,.3) = B(4;10,.3) - B(3,10,.3) = .200

b(6;10,.7) = B(6;10,.7) - B(5;10,.7) = .200

P(2£ X £ 4) = B(4,10,.3) - B(1;10,3) = .701
P2<X)=1-P(XX £1)=1-B(1;10,3) = .851

P(X £ 1) = B(1;10,.7) =.0000

P2 <X <6) = (3£ X £5) = B(5;10,3) - B(2,10,.3) = 570
Bin(25, .05)

P(X £ 2) = B(2,25,.05) = .873

P(X? 5)=1-P(X £4)=1— B(4,25,05) = .1-.993= 007
P(1£ X £4)=P(X £4)— P(X £0) = 993- .277 = 716
P(X =0) = P(X £ 0) = .277

E(X) = np=(25)(.05) = 1.5

V(X) = np(1 - p) = (25)(.05)(.95) =1.1875
S, = 1.0897
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X ~ Bin(6, .10)

a PX=1)= gig( p)*@- p)™*= E?g(.l)l(.g)?’ = 3543

b. P(X22)=1—[PXX =0)+PX=1)].
Froma, weknow P(X = 1) = 3543, and P(X = 0) :Ef;g(.l)" (.9)° =.5314.
Hence P(X 3 2) = 1—[.3543+ .5314] = .1143
c. Either 4 or 5 goblets must be selected
i)  Select 4 gobletswith zero defects: P(X = 0) = Eig(.no (.9)* =.6561.
ii) Select 4 goblets, one of which has a defect, and the 5" is good:
g%.l)l(.g) E 9= 26244

So the desired probability is .6561 + .26244 = .91854

Let S= comesto acomplete stop, sop=.25,n=20

a  P(X £6)=B(6,20,25) =.786

b. P(X =6)=b(6;20,.20) = B(6;20,.25) - B(5,20,.25) = .786 - .617 = .169
c. P(X36)=1-P(X£5)=1-B(520,25)=1-.617=.383

d. E(X)=(20)(.25) =5. We expect 5 of the next 20 to stop.

Let S=hasat least onecitation. Thenp=.4,n=15

a. If atleast 10 have no citations (Failure), then at most 5 have had at least one (Success):
P(X £ 5) = B(5;15,.40) = 403

b. P(X£7)= B(7;15,40) = .787

c. P(5£X£10)=P(X £10)— P(X £4) = .991- .217= 774
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X ~Bin(10, .60)
a PX36)=1-PX£5)=1-B(520,60)=1-.367=.633
b. E(X)=np=(10)(.6) =6; V(X)=np(1l-p)=(10)(.6)(.4) =24
sy=155
E(X) + sx=(4.45,7.55).
WedesireP(5£ X £7)=PX £7)—P(X £ 4) =.833-.166 = .667
c. P(BEXET)=PXET7)—P(X£2)=.833-.012=.821
Let Srepresent atelephone that is submitted for service while under warranty and must be
replaced. Then p = P(S) = P(replaced | submitted)P(submitted) = (.40)(.20) = .08. ThusX,

the number among the company’ s 10 phones that must be replaced, has a binomial

o 200 12/ e
distribution with n = 10, p = .08, so p(2) = P(X=2) = g 5 H.08)°(.92)° =.1478
a

X ~Bin (25, .02)
a P(X=1)=25(.02)(.98)** = .308

b. P(X=1)=1-P(X=0)=1-(.98)° =1- .603=.397

. P(X=2)=1-P(X=1)=1-[.308+.397]

d. X=25(02)=.5;s =./npq =4/25(.02)(.98) = /49 = .7
X+2s =5+1.4=1.9 SOP0=X=19=P(X=1)=.705

5(4.5) +24.5(3)
25

= 3.03 hours

X =the number of flashlights that work.

Let event B = { battery has acceptable voltage} .

Then P(flashlight works) = P(both batteries work) = P(B)P(B) = (.9)(.9) = .81 We must
assume that the batteries’ voltage levels are independent.

X~ Bin (10, .81). P(X=9) = P(X=9) + P(X=10)

?52(.81)9 (19)+ gg 2(.81)10 = .285+.122 = 407
(%] (%]
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54. L et p denote the actual proportion of defectivesin the batch, and X denote the number of
defectivesin the sample.

a.  P(the batch isaccepted) = P(X £ 2) = B(2;10,p)

p | 01 05 10 20 25

P(accept) | 1.00 983 930 678 526

1.0 —

P(accept)

05 —

0.0 —

T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

p

c. P(thebatchisaccepted) = P(X £ 1) = B(1;10,p)
p 01 .05 10 20 25

P(accept) ‘ 99 914 736 376 244

d. P(thebatchisaccepted) = P(X £ 2) =B(2;15,p)
p 01 05 10 20 25

P(accept) ‘ 1.00 964 816 398 236

e. Wewant aplan for which P(accept) ishigh for p£ .1 and low forp>.1
The plan in d seems most satisfactory in these respects.
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a.  P(rejecting claim when p = .8) = B(15;25,.8) = .017

b. P(notregectingclaimwhenp=.7) =P(X 3 16 whenp=.7)
=1- B(15;25,.7) = 1 - .189 = .811, for p = .6, this probability is
=1-B(1525,6) =1- .575=.425.

c. Theprobability of rejecting the claim when p = .8 becomes B(14;25,.8) = .006, smaller
than inaabove. However, the probabilities of b above increase to .902 and .586,
respectively.

h(x) = 1 XX + 2.25(25— X) = 62.5— 1.5X, s0 E(h(X)) = 62.5— 15E(X)
=625— 1.5np— 62.5— (1.5)(25)(.6) = $40.00

If topic A ischosen, whenn =2, P(at least half received)

=P(X3 1)=1-P(X =0)=1-(.1)*=.99

If B is chosen, when n = 4, P(at least half received)

=P(X3 2)=1-PXX £1) = 1—(0.1)* — 4.1)3(.9) = .9963

Thus topic B should be chosen.

If p=".5, the probabilitiesare .75 for A and .6875 for B, so now A should be chosen.

a. np(l-p)=0if either p=0 (whenceevery tria isafailure, sothereisno variability in
X) or if p=1 (whenceevery trial isasuccess and again there is no variability in X)

d o
b. d_[np(l' p)] =n(1-p) +p(D]=n1-2p=0 p p=.5, whichiseasly
P

seen to correspond to a maximum value of V(X).

amo 2en o
a b(x;n,l—p):gxzf(l- |o)*(|o)”'*=gn Xi(p)”'x(l- p)* =b(n-x; n, p)
4] A )

Alternatively, P(x S swhen P(S) = 1 - p) = P(n-x F'swhen P(F) = p), sincethetwo
events areidentical), but the labels Sand F are arbitrary so can be interchanged (if P(S)
and P(F) are also interchanged), yielding P(n-x S swhen P(S) = 1 - p) asdesired.

b. B(x;nl—p) =Pl@mostx SswhenP(S)=1-p)
= P(at least n-x F'swhen P(F) = p)
= P(at least n-x S'swhen P(S) =p)
=1-P(at most n-x-1 S'swhen P(S) = p)
=1-B(n-x1;n,p)

c. Whenever p>.5, (1-p) <.5so probabilitiesinvolving X can be calculated using the
results a and b in combination with tables giving probabilities only for p£ .5
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Proof of E(X) = np:

8 aﬂO X n- x 0n n! X n- x
EX) =a X>§ =p*1- p)" =a X*———p (1- p)
x=0 Xg

w1 X(n-x)!
) n X n- x g (n - 1)' x-1 n-x
= a————p (1- =n - 1-
A G &P Eea T (- )
Y (n- D! y n1
=NPA P (- P)" T (yreplacesx-1)
& Mi(n-1- y)
i %tam- 10 b3
=mpia g p’(L- p)"y
1 vy=0 Y g %
The expression in bracesis the sum over all possiblevaluesy =0, 1, 2, ..., n-1 of abinomia

p.m.f. based on n-1 trials, so equals 1, leaving only np, as desired.

a.  Although there are three payment methods, we are only concerned with S = uses a debit
card and F = does not use adebit card. Thuswe can use the binomial distribution. Son
=100andp=.5. E(X) =np=100(.5) =50, and V(X) = 25.

b. With S=doesn’t pay with cash, n=100and p=.7, E(X) = np = 100(.7) = 70, and V(X)
=21

a. Let X =the number with reservations who show, abinomial r.v. withn=6andp=.8.
The desired probability is
P(X =5or 6) = b(5;6,.8) + b(6;6,.8) = .3932 + .2621 = .6553

b. Let h(X) =the number of available spaces. Then
Whenxiss 0 1 2 3 4 5 6

Hxis 4 3 2 1 0 0 0

6
E[h(X)] = é h(x) %(x;6,.8) =4(.000) + 3(.002) = 2(.015 + 3(.082) = .277
x=0

c. Possible X valuesare0, 1, 2, 3, and 4. X =0if there are 3 reservations and none show or
...0r 6 reservations and none show, so
P(X =0) =b(0;3,.8)(.1) + b(0;4,.8)(.2) + b(0;5,.8)(.3) + b(0;6,.8)(.4)
=.0080(.1) +.0016(.2) +.0003(.3) +.0001(.4) = .0013
P(X =1) =b(1;3,.8)(.1) + ... + b(1;6,.8)(.4) =.0172
P(X = 2) =.0906, P(X = 3) =.2273,
P(X=4)=1-[.0013+ ... +.2273] = .6636
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63. Whenp=.5 m=10ands =2.236, s0 2s =4.472 and 3s = 6.708.
Theinequality [X —10|3 4.472 issatisfied if either X £50r X 3 15, or P(X - m3 2s) = P(X
£50r X3 15)=.021+.021 =.042.

Inthecasep=.75 m=15ands = 1.937, s02s = 3.874 and 3s =5.811. P(|X - 15|3 3.874) =
P(X £110r X 3 19) =.041 +.024 = .065, whereas P(|X - 153 5.811) = P(X £ 9) =.004. All
these probabilities are considerably less than the upper bounds .25(for k = 2) and .11 (for k =
3) given by Chebyshev.

Section 3.5

64.
a. X~ Hypergeometric N=15, n=5, M=6

a® B0
b. PX=2)= Z%ﬂ 840 _ 280
56 3003

€55
P(X=2) = P(X=0) + P(X=1) + P(X=2)

8o adEdo
& g@% 840 _126+756+840 _ 1722 _
@55 o450 3003 3003 3003

§55 s
P(X=2) = 1— P(X=1) = 1— [P(X=0) + P(X=1)] = 1- 126+ 756 _

3003
60 ad5- 56 _ a6 6 66
R T v Tt

V(X) =.926
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X~h(x; 6,12, 7)

a@cséo

P(X=5) = =— =114

P(X=4) = 1-P(X=5) = 1 - [AX=5) + A(X=6)] =

eagcséo aaou
5kly &6
$ g, gﬂu =1- 105_+7:1- .121=.879
eézo @_Zou 924
@nga g6ﬂg

7
= E79=35. 5 = [EYONENE) = /7% - 002
P(X > 3.5+ .892) = P(X > 4.392) = P(X=5) = .121 (see part b)

We can approximate the hypergeometric distribution with the binomial if the population
size and the number of successes are large: h(x;15,40,400) approaches b(x;15,.10). So
P(X=5) " B(5; 15, .10) from the binomial tables=.998

230200

§1 é So_ 2070
22006
g15ﬂ
P(X 3 10) = h(10;15,30,50) + h(11;15,30,50) + ... + h(15;15,30,50)
=.2070+.1176+.0438+.0101+.0013+.0001 = .3799

P(X = 10) = h(10;15,30,50) =

P(at least 10 from the same class) = P(at least 10 from second class [answer from b)) +
P(at least 10 from first class). But “at least 10 from 1% class” isthe same as“at most 5

fromthe second” or P(X £5).

P(X £ 5) = h(0;15,30,50) + h(1;15,30,50) + ... + h(5;15,30,50)
= 11697+.002045+.000227+.000150+.000001+.000000
=.01412
So the desired probability = P(x 3 10) + P(X £5)
=.3799 +.01412 = .39402
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E(X) = an 15@ 9
N 50

Vo= 2290) é"i- §9_ 25714
e49¢g
Sx = 1.6036

LetY =15-X. ThenE(Y) =15—E(X)=15—9=6
V(Y) =V(15— X) — V(X) = 25714, s0sy = 1.6036

Possible values of X are5, 6, 7, 8, 9, 10. (In order to have lessthan 5 of the granite, there
would have to be more than 10 of the basaltic).

280306
5 X105
P(X =5) =h(5; 15,10,20) = ——— = .0163.
a200
s
Following the same pattern for the other values, we arrive at the pmf, in table form
below.

X | 5 6 7 8 9 10
() |.0163 1354 3483 3483 1354 0163

P(all 10 of onekind or the other) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326

M 10
EX)=nNx—=15x—=75;v(X)=¢c—47.5 -———9868
*) N 20 0= 9 9( gi 20g
Sy =.9934

m+ s = 7.5+ .9934 = (6.5066, 8.4934), so we want
P(X =7) + P(X = 8) =.3483 + .3483 = .6966

h(x; 6,4,11)

682018

ellg
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h(x; 10,10,20) (the successes here are the top 10 pairs, and asample of 10 pairsisdrawn
from among the 20)

Let X = the number among the top 5 who play E-W. Then P(all of top 5 play the same
direction) = P(X = 5) + P(X = 0) = h(5;10,5,20) + h(5;10,5,20)
235 §59
55 05
= _E 2+ 2= 033
00 a200

N=2n;M=n;n=n

h(x;n,n,2n)

n 1
EX)=N>*>—=—n;

2n 2
V(X) =
an- ngo n Ng sah §n Ng_ae n oNnao
¢ Xl =6 +x—’€i' 52T € XX~
e2n-1g 2né 2ng é2n-1g2 é 2ng eé2n-1g 2 é2g

h(x;10,15,50)

M s
When N islargerelative to n, h(x; n,M,N) &b@(; n,Wg,
e

o
0 h(x10,150,500) &b(x:10,.3)

Using the hypergeometric model, E(X) = 10 >€§'5i009 =3 and
e

(7]
V(X) = 3—2(3(10)(.3)(.7) =.982(2.1) = 2.06
Using the binomial model, E(X) = (10)(.3) = 3, and
V(X)=10(.3)(.7) =21
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a. WithS=afemalechild and F = amale child, let X = the number of F' sbefore the s,
Then P(X = x) = nb(x;2, .5)

b. P(exactly 4 children) = P(exactly 2 males)
=nb(2;2,.5) = (3)(.0625) =.188

c. P(at most 4 children) =P(X £ 2)

2
= & nb(x:2,.5) = .25+2(25)(5) + 3(0625) = 688
x=0

()(5)_

d EX)= 2, so the expected number of children = E(X + 2)

—E(X)+2 4

Theonly possible values of X are 3, 4, and 5.
p(3) = P(X = 3) = P(first 3are B'sor first 3are G's) = 2(.5)° = .250
p(4) = P(two among the 1% three are B’ s and the 4th isa B) + P(two among the 1% three are

a30
G'sandthe4thisaG) = 2 >§2i(.5)4 =.375
a

p(5) = 1—p(3) - p(4) = .375

Thisisidentical to an experiment in which a single family has children until exactly 6 females
have been born( since p = .5 for each of the three families), so p(x) = nb(x;6,.5) and E(X) =6
(=2+2+2, the sum of the expected number of males born to each one.)

Theinterpretation of “roll” hereisapair of tosses of asi ngle player’ s die(two tosses by A or
two by B). With S=doubles on aparticular roll, p= <. Furthermore, A and B areredlly

identical (each dieisfair), so we can equivaently i |mag| neA rolling until 10 doubl&sappear.
The P(x rolls) = P(9 doubles among thefirst x — 1 rolls and a double on the X' M roll =
x-10 x-10 10

1Qaé30 aelo aelo 1Ca—50 ael_
§ 9 geﬁz e6z e6z g 9 geﬁra eGra
E(X) = r(lio P) =10(€) ~10(5) =50 v(x)= rd- p) _ 10( )

G p° 2y

=10(5)(6) = 300
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Section 3.6

75.
a P(X£8)=F@85) =932

b. P(X=8)=F@85)- F7;5)=.065

c. P(X39=1-PXX£8)=.068

d. P(BEX£8)=F(@85)— F(45) = 492

e PB<X<8)=F75)—F(55) = .867-.616=.251
76.

a PXX£5)=F58)=.191

b. P6EX £9)=F9;8)-F(58)=.526

c. P(X3®10)=1-P(X£9)=.283

d. E(X)=1=10, sy= /| =2.83,s0P(X >12.83)=P(X ® 13)= 1— P(X £ 12) =1-
936 = 064

77.
a  P(X £10) = F(10;20) = .011

b. P(X>20)=1—F(20;20)=1-.550= 441

c. PAOE X £ 20) = F(20;20) — F(9;20) = .559 - .005 = 554
P(10< X < 20) = F(19;20) — F(10;20) = .470 - .011 = .459

d. EX)=1=20, sy=+ =4.472
P(m- 25 <X <m+ 25 ) = P(20—8.944< X < 20 + 8944)
= P(11.056 < X < 28.944)
= P(X £ 28) - P(X £ 11)
= F(28:20) - F(12:20)]
= 966- 021 = 945

78.
a PXX=1)=F12)-F02) =.982- .819= 163
b. P(X32)=1-PXE£1)=1-F12)=1-.982=.018

c. P(1% doesn’'t C 2" doesn’t) = P(1% doesn’ t) xP(2" doesn’t)
= (819)(819) = 671
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1
p=——;n=1000; =np=5

a

b.

200
P(5£ X £ 8) = F(8;5) — F(4;5) = .492

P(X® 8=1-P(X£7)=1-.867=.133

The experiment is binomial with n= 10,000 and p =.001,
som=np=10ands = 4/Npq =3.161.

X has approximately a Poisson distribution with| =10,
soP(X >10)" 1 - F10;10) = 1- 583 = 417

PX=0)"0

| =8whent =1, so P(X = 6) = F(6;8) — F(5;8) =.313- .191 =.122,
P(X 3 6)=1- F(5;8) =.809, and P(X 2 10) = 1- F(9;8) = .283

t=90min =15 hours, sol = 12; thus the expected number of arrivalsis 12 and the SD
=412 =3.464

t=2.5hoursimplies that | =20; inthiscase, P(X 3 20) =1—F(19;20) =.530 and P(X £
10) = K(10;20) = .011.

P(X = 4) = F(4;5) — F(3;5) = .440 - 265= 175
P(X3 4)=1-PX £3)=1-.265=.735

Arrivals occur at therate of 5 per hour, so for a45 minute period therateis | = (5)(.75)
= 3.75, which is also the expected number of arrivalsin a45 minute period.

For atwo hour period the parameter of the distributionis |t =(4)(2) =8,
0 P(X =10) = F(10;8) — F(9;8) = .099.

For a30 minute period, | t = (4)(.5) = 2,50 P(X =0) =F(0,2) =.135

EX)=It=2
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Let X = the number of diodes on aboard that fail.
a.  E(X)=np=(200)(.01) = 2, V(X) = npg = (200)(.01)(.99) = 1.98, sx = 1.407

b. X hasapproximately a Poisson distribution withl =np=2,
SOP(X3 4)=1-PX£3)=1-F3;2)=1-.857=.143

c. P(board works properly) = P(all diodeswork) = P(X = 0) = F(0;2) = .135
Let Y = the number among the five boards that work, abinomial r.v. withn=5and p =
A135. ThenP(Y 3 4)=P(Y =4)+P(Y =5) =

?%.135)4(.865) ¥ gg(iss) 5 (.865)° = 00144 + 00004 = 00148
Ay P

1

a = 1/(mean time between occurrences) = —5 =2
a at=(Q@2=4
b. PX>5)1-P(X£5)=1-.785=.215
c. Solvefort,givena=2

1=¢e™

In(.1) =-at

2.3026

t= » 1.15years

§ el & el & e'l* & e'lY
EX)= g X =a X =l g x =l g x =1

x=0 x=1 X x=1 y=0

a. For aone-quarter acre plot, the parameter is (80)(.25) = 20,
so P(X £ 16) = F(16;20) =.221

b. The expected number of treesis| Xarea) = 80(85,000) = 6,800,000.

c. Theareaof thecircleispr® = 031416 sq. miles or 20.106 acres. Thus X has a Poisson
distribution with parameter 20.106
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a.  P(X =10and noviolations) = P(no violations | X = 10) xP(X =10)
= (.5)1° q[F(10;10) — F(9;10)]
= (.000977)(.125) =.000122

b. P(y arrive and exactly 10 have no violations)
= P(exactly 10 have no violations |y arrive) xP(y arrive)

Vi
:%- (. 10(_5)y 10e.1o (10)y _ e (5)y
Oc Yy 10(y- 10)

= P(10 successesiny triallswhen p = .5) xe

_ o § €)Y
c. P(exactly 10without aviolation)= @ ———————
y21010 (y - 10)!

lO

_ e g (5)y 10 —10 >610 é¥. (5)u —10 >610 )es
100 yo(y - 10)' 10 S 10
e—5 >610
= 10 =p(10;5).

In fact, generalizing this argument shows that the number of “no-violation” arrivals

within the hour has a Poisson distribution with parameter 5; the 5 results froml p =
10(.5).

a  Noeventsin (0O, t+Dt) if and only if no eventsin (o, t) and no eventsin (t, t+Dt). Thus, Py
(t+Dt) = Py(t) P(no eventsin (t, t+Dt))
=Po()[1-1 xDt—o(Dt)]

Py(t+D0) - Ry(t) _ Dt .. oD
b. s IP(t) Po(t)=

c. %[e"t]:-Ie"t:-IPo(t),asdesired.

dée''(l)u -le''()* Ke'(nk?
d. —é 0= +
ag kK 4 Kl K

e—lt(l t)k e—lt(l t)k—l

=- | ” +1 k-1 = - P(t) + | Pea(t) asdesired.
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Supplementary Exercises

90.

Outcomes are(1,2,3)(1,2,4) (1,2,5) ... (5,6,7); there are 35 such outcomes. Each having

probability ?%5 . The W valuesfor these outcomes are 6 (=1+2+3), 7, 8, ..., 18. Sincethereis
just one outcome with W value 6, p(6) = P(W = 6) = 3%.) . Similarly, there are three outcomes
with W value 9[(1,2,6) (1,3,5) and 2,3,4)], so p(9) = 315 . Continuing in this manner yields

the following distribution:

W ‘ 6 7 8 9 10 11 12 13 14 15 16 17 18

91.

w
ml“
w
(41
w
G
w
(41
w
&
w
G
w
(41
w
G

1 1 2 4

P(W) ‘ B B B BB
]68

Since the distribution is symmetric about 12, m= 12, ands * = g (w- 12)* p(w)

w=6

= L[(6°() + B +... + B +(6°(1) =8

a.  p(1) = P(exactly one suit) = P(all spades) + P(all hearts) + P(all diamonds)
2830

£
+ P(all clubs) = 4P(all spades) = 4 xaé—? = 00198

20
855
p(2) = P(all hearts and spades with at least one of each) + ...+ P(all diamonds and clubs
with at least one of each)

=6 P(all hearts and spades with at |east one of each)
=6[P(1hand4s)+P(2hand3s)+P(3hand2s) +P(4hand1s)]

#3830  30ed30l

.~ €, U
421 382 x 5 + 44,6160
yg g fa+2¥g 3_@1;:6218’590 6 6H:,14592
8529 u g 259890

6529 ¢
855 855 8
3 I
4 aé2 213)(13(13)
p(4) = 4P(2 spades, 1h, 1d, 1¢) = gaéz _ = 26375
0
§55

=6

oD CD%D) D D

P(3) =1—[p(1) + p(2) + p(4)] = .58835

1 z 4 N
b, m= & xxp(x) =3.114,5 * = & X* xp(X)§- (3.114)% = .405,s =.636
Ex=1 u

x=1
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p(y) = P(Y =y) = P(y tridlsto achiever S's) = P(y-r F'sbeforer™ S)
-1

=p' (- p)Y L y=rr+Lr2,
- 1ﬂ

= nb(y -r;r,p) -
§r

a  b(x;15,.75)

b. P(X>10)=1-B(9;15,.75) = 1-.148

c. B(10,15,.75) - B(5,15, .75) = .314 - .001 = .313

d. m=(15)(.75) = 11.75, s>= (15)(.75)(.25) = 2.81

e. Requestscanall bemetif andonly if X £10,and 15- X £8,i.e.if 7£ X £ 10, so P(dl

requests met) = B(10; 15,.75) - B(6; 15,.75) = .310

P( 6-v light works) = P(at least one 6-v battery works) = 1 — P(neither works)

=1-(1-p)% P(D light works) = P(at least 2 d batterieswork) = 1 — P(at most 1 D battery
works) =1— g(l —p)* +4(1—p)®]. The6-v should betakenif 1—(1—p)? 3 1-[(1-
p)* +4(1—p)’.

Simplifying, 1£(-p)’+4p(l-p) P 0£2p-3p> b pE 2.

Let X ~Bin(5,.9). ThenP(X 3 3)=1—P(X £2) = 1-B(25,9) =.991

a P(X3 5)=1-B(425,05)=.007
b. P(X3 5)=1-B(425,10) = .098
c. P(X35)=1-B(425,20)=.579

d. All would decrease, which is bad if the % defectiveislarge and good if the % is small.
a. N =500, p=.005, sonp=2.5and b(x; 500, .005) Ep(x; 2.5), a Poisson p.m.f.

b. P(X =5)=p(5; 25) - p(4; 2.5) = .9580 - .8912 = .0663

c. P(X®5)=1-p(4;25)=1-.8912=.1088
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X ~B(x; 25, p).
a. B(18; 25,.5)—B(6; 25, .5) =.986

b. B(18; 25, .8) — B(6; 25, .8) = .220

c. Withp=.5 P(rgectingtheclam)=P(X £7) + P(X 3 18) = .022+[1-.978] =.022 +
022=.044

d. Theclaimwill not berejected when8£ X £ 17.
With p=.6, P(8 £ X £ 17) = B(17;25,.6) — B(7;25,.6) = .846 - .001 = .845.
With p=.8, P(8 £ X £ 17) = B(17;25,.8) — B(7;25,.8) = .109 - .000 = .109.

e. Wewant P(rejecting the claim) = .01. Using thedecisionrule“rejectif X =6o0r X 3
19" givesthe probability .014, which istoo large. We should use“rejectif X =5o0r X 3
20" whichyields P(rejecting the claim) =.002 + .002 = .004.

Let Y denote the number of testscarried out. For n= 3, possibleY valuesare1and 4. P(Y =
1) = P(no one has the disease) = (.9)% = .729 and P(Y = 4) = .271, 0 E(Y) = (1)(.729) +
(4)(.271) = 1.813, as contrasted with the 3 tests necessary without group testing.

Regard any particular symbol being received as constituting atrial. Thenp=P(S) =
P(symbol is sent correctly or is sent incorrectly and subsequently corrected) = 1 — p; + pip2.
The block of n symbols gives abinomial experiment with ntrialsand p= 1—p; + p1p>.

p(2) = P(X = 2) =P(Son#1 and Son#2) = p?

p(3) = P(Son#3 and Son #2 and F on #1) = (1 — p)p?

p(4) = P(Son #4 and Son #3 and F on #2) = (1 — p)p?

p(5) = P(Son#5and Son#4 and F on #3 and no 2 consecutive S'sontrialsprior to#3) =[ 1
-p(2) 11 -p)p?

p(6) = P(Son #6 and S on #5 and F on #4 and no 2 consecutive S'son trials prior to#4) = [ 1
-p(2) - P3N -p)p?

Ingenerd,forx:S, 6,7,... p(x) = [ 1_p(2) - —p(X _3)](1_p)p2

Forp=.9,
x | 2 3 4 5 6 7 8
Px) | 8L 08l 08l 0154 0088 0023 .0010

SOP(X £8)=p(2) + ... + p(8) = 9995

a  With X ~Bin(25,.1),P2 £ X £ 6) = B(6;25,1 — B(1;25,.1) = .991 - 271 =720

E(X) = np=25(1) = 25, 55 = ;/NPQ = 4/25(.1)(.9) =/2.25 =1.50

=

o

P(X ® 7whenp=.1)=1—-B(6;25.1) = 1- .991 = .009

d. P(X £6whenp=.2)=B(6;25,.2) ==.780, whichisquite large
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a. Letevent C = seed carries single spikelets, and event P = seed produces ears with single
spikelets. Then P(PC C)=P(P|C) xP(C) = .29 (.40) = .116. Let X =the number of
seeds out of the 10 selected that meet the condition P C C. Then X ~Bin(10, .116).

i
PX =5) = ?5 (116)°(:884)° = 002857
a

b. For 1 seed, the event of interest isP = seed produces ears with single spikelets.
P(P)= P(PC C) + P(PC Cd =.116 (from a) + P(P | C xP(C9)
=.116 + (.26)(.40) = .272.
Let Y = the number out of the 10 seeds that meet condition P.
ThenY ~Bin(10, .272), and P(Y =5) = .0767.
(Y £5) =b(0;10,.272) + ... + b(5;10,.272) = .041813 + ... + .076719 = .97024

With S = favored acquittal, the population sizeis N = 12, the number of population S'sisM =
4, the sample sizeis n = 4, and the p.m.f. of the number of interviewed jurors who favor

acquittal isthe hypergeometric p.m.f. h(x;4,4,12). E(X) = 4 >{?i9— 1.33

29

a P(X=0)=F0;2) 0.135
b. LetS=anoperator who receives no requests. Thenp=.135andwewishP(4 Ssin5

trials) = b(4;5,. 135)_5 ;( 135)*(.884)" =.00144

AA-2 X N

c. P(all receivex) = P(first receivesx) x... xP(fifth receives x) = éTU' , and P(all
e u

receive the same number ) isthe sum fromx =0to¥.
0
P(at least one) = 1 — P(none) = 1 - €"'PF° x% 1-e'"PR = g9p 'R =1
-1n(.0
p R :# = .7329p R=.8561
p

¥
The number sold ismin (X, 5), so E[ min(x, 5)] = é_ min( x,5) p(x;4)

¥
= (OP(0:4) + (1) p(Li4) + (2) p(2:4) + (3) P3:A) + (4) p4:4) + 5Q P(x;4)
x=5
=1735+ 51— F(4;4)] = 359
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108.
a  P(X =x)=P(A winsinx games) + P(B winsin x games)
=POSsin1%x1C Sonthex™) + PO Fsin 1% x1 C F on the X"

ax- 10 ax- 10
zg 9 :pg(l- p)x—lO p +g 9 :(1_ p)g px—lo(l_ p)
(4] (%]

=§(;)1%p1°(1- p)* 10+ (L- p)°p*¥]

b. Possiblevaluesof X arenow 10, 11, 12, ...( al positive integers® 10). Now

16
P(x:x):ée(9 %plo(l- p) ' +qg"(1- q)“"] forx=10, ..., 19,
@
19

SoP(X® 20)=1—P(X <20) and P(X <20) = § P(X = x)
x=10

109.
a.  No; probahility of successis not the samefor all tests

b. Therearefour ways exactly three could have positive results. Let D represent those with
the disease and D¢represent those without the disease.

Combination Probability

D¢
0 3 Lo N N
€20 u é&80 u
22 (8 g L9 ('
2} G [} G

=(.32768)(.0729) = .02389

1 2 P . < P . N
55200 u é50 U
%1.2)1(.8)4gxgzzg(.Q)Z(.l)sg

(%] u (%) u
=(.4096)(.0081) = .00332
i b8 e e 00
- . u . . u
g% 0%125 0
=(.2048)(.00045) = 00009216
3 0

&80 u éd0 u

gsi(-Z)?’(-8)29%025(-9)0(-1)59
1 0 &V Q
=(.0512)(.00001) = 000000512

Adding up the probabilities associated with the four combinations yields 0.0273.
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(X+r-1(x+r-2)..(x+r- X
X

Withr=25andp=.3,p(4) =

110.  Kk(rX)=

(5.5)(4.5)41(3.5)(2.5) (.3)2_5 (_7)4 = 1068

Using k(r,0) = 1, P(X 3 1) =1—p(0) = 1— (.3)*° = .9507

111.
a pxlm=1p(xl)+3 p(x;m)whereboth p(xl) and p(x; m are Poisson p.m.f.'s
and thus3 0, sop(x I rr)3 0. Further
1
a p(x;1,m = a D(X|)+ a IO(Xm)‘ +5=1
x=0 x=0
b. .6p(x1)+.4p(xm)
c EX)= a X[ p(X | )+— p(x; M) ——a xp(x;| )+ a Xp(x; m)
x=0 x=0 x 0
—1| l :l il
2 2
d EX%)== a x*p(x; | )+ a X p(x; m)——(l +1 )+%(m2 + ) (sincefor a
x 0 x=0
Poisson r.v., E(X )—V(X)+[E(X)]2 | +12),
1 g +my’ _g -mg” | +m
viX)= =12 +1 +m? +m|- ) 4
2V 2[ §20 &2 95 2
112.

a b(x+1n, p) — (n- x) %P >1 if np—(1-p) > x, from which the stated
b(x;n,p)  (x+1) (1- p)

conclusion follows.

p(x+L1) | _ _ _
b. = >1 if x<I| -1, fromwhich the stated conclusion follows. If
p(xl)  (x+)
| isaninteger, then| - 1isamode, but p(,|)=p(1-1,1) sol isasoamode[p(x;!)]
achievesitsmaximum for bothx =1 -1andx =1.
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10 10
113. PX=j)= 601 P (amontracki ¢ X =j) = é P(X=jlamoni ) xp
i=1 i=1
(]).O (]).O
= A P(extseekat l+j+1or15-1)>p = Q (Pisjsr T B-j.1) Pi
i=1 i=1
wherepg =0if k<0ork>10.

M o - M 5 M! - Mg
a EN-Xg & (X-DI(M-x)! &n- X 4
114, E(X)zaxygxé Xo_g eI X)§ e
x=0 &\Ig x=1 é\lg
NG NG
aN- Mg aN-1- (M- Do
Mga-108n- x5 mpaM-1o§ n-l-y 3
nx>—a T - =nx—a T ”
NG Ex-15a0- 19 NAE y g aN - 19
gn-lg n-1g
n-1
anéh(y;n-l,M-l,N-l)=an
N <, N

115,  LeA={x[x-n? ks}. Thens?= g (x- M2 p(x)3 (ks )?Q p(x). But
A

A

é p(X) =P(X isin A) = P(IX - M3 ks), so 5?3 k’s?xP(|X - M3 ks), as desired.
A

116.
N $ et
a For[04], | = Q€ dt =123.44, whereasfor [2,6],| = Q¢ dt =409.82

0.9907
b. | = @ e”%dt =9.9996 » 10, so the desired probability is F(15, 10) = .951.
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CHAPTER 4

Section 4.1

a PX£1)= é f(X)dx = é%xdx:%xz]; =25

b, P(5£X£15)—Q *Lxdx=1x 2]15

e Rx>19= ) f (9= ) axdx=2xC], =L » 438

2. F(X) = 45 for -5£x£5, and = 0 otherwise
a PX<0)= Qlodx_
25, o _
b. P(-25<X<25)= Q.15 dx=.5
3 1
C. P(-2£X£3):Ozﬁdx:.5

k+4 ]k+4 _

d. P(k<X<k+4)—Q =ax = (k+4)- K] =

7ol

a. Graphof f(x)=.09375(4 - %)

/N

f(x1)
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2

3
(X >0)= (§.09375(4- X*)dx = 09375(4x - X?)ﬂ =5
Uo

Pl<X <1)= (‘3.09375(4- x?)dx = .6875

S5

Px<-50RX>5=1-P-5£X£.5)=1- 05.09375(4- x%)dx
=1-3672=6328

N ¥ X - x2 2 B 2 [¥
Q, f(xa)dx=g—e "™ dx=-e X2 ]O =0-(-) =1

e
q

200 X

_ 200 . _ X2/ 292
PX £200)= Q, f(x,q)dx—Q q—ze dx

= e7/m [, 1353+1= 8647

P(X <200) =P(X £ 200) » .8647, since x is continuous.
P(X3 200)=1- P(X £ 200) » .1353

P(100 £ X £ 200) = é(;o f(xq)dx=- e’ 2°v°°°]f§§ » 4712
Forx>0,P(X £x)=

X

Q. f(y,q)dy = 6_3;e-y2/zqzdxz_ e_yz/ZqZ]: . g
€

1= §, T 00dx = Qe =k(Z)f =k(2)p k=3

o

64

2xdx =1 x3]1'5 =1 (i)3 - %(1)3 =19 5 2069

Sxedx =1 =1- [2(8)- o]:l- 2. =315 5781

64 64
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1= (‘Sk[l- (x- 3)2]dx = qlk[l- u?]du :%p K :%

P(X>3)—Q3[1 (x- 3)?]dx =.5 by symmetry of the p.d.f

PEE X £5)= § 51- (x- 371dx =3 [1- ()2]du =L » 367
4 4]~ Q5 4Q4 128

P([X-3> 5)=1—P(|X-3£ 5)=1— P(25£ X £35)
<5 _5
=1- 05%[1' (U)z]du - 1_6 » 313

f(x) = 5 for 25 £x £ 35 and = 0 otherwise

P(X >33) = éi—tdx =2

2 035

E(X) = x%dx =—qg =30
Qs 208,

30+ 2isfrom 28 to 32 minutes:

32
PB<X<B)= Q5 =% X2 =4

atr2

P(aExE at2) = % , sincetheinterval haslength 2.

131



i)

Chapter 4: Continuous Random Variables and Probability Digtributions

10
\¥ \5 \10 y2 ﬁ d]
f(VAV = ALvay + A (2- L - +& . =2
Q, f(Y)dy =Qzydy +Q (5- =y)dy 504 "5V 50 A
1 é 10 1 1
=Z+44-2)- (2- D)p==+==1
2 é‘ )= ( 2)H 2 2
3 yzu5 o]
m£3)=@%5ydy=5—t.b:5».18

RYES == Qdydy + §(2- Ly)dy=§» 92
QZS Q 5 25 25

P(3£Y£8)‘P(Y£8)-P(Y<3)—@-i:ﬁ: 74
50 50 50

3 10 2
Y<2oY>6)==Q=ydy+ (4- 2y)dy=—=4
RV <20rv>6)== Qzydy +Q (5 V) =

PX£6)= = (‘S.lse‘ A30¢9) gy = .15(5'5 e ™du (afteru=x - 5
— e- 15u ]25 - 1_ e— .825 » 562
1- 562 = .438; 438

P(5E£Y £6)=P(Y £6)-P(Y £5)» 562- .491 = 071
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10.
A
| >
q
\ k 2 10 _q-
=0¥f(xkq)dx Q k+1 k&‘:?&j}q =q_=1
1oub mok
HXEb)‘WdX q _k&jq =1- gBB
kg * 10 a8 o810
EXED) = O _x = U _®o HOo
P(a ) = Q k+1 q >qe2 ngﬂa gag gbg
Section 4.2
11.

PXE£D)=F1=+=.25
P(5EX£1)=F1)-F(5) = % =.1875

P(X>5=1-PX £ 5)=1-F5)= 12 =.9375

b M =2b Mm=4+/2»1414

m’
5=F(M=—2">,
(m ==

f(x) = Fx) = 5 for 0£ x <2, and = 0 otherwise

EX)= &, XXT (x)dx :6x><%xdx: %6x2dx - %ﬂ =§ »1.333
U,

2
E(X)—QX f(x)dx = Qx —xdx-—Qx dX—ggo—Z,

Sovar(X) = EX?) - [EX)P = 2- (&) =& » 222,5,» 471
Fromg , E(X?) =2
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. PX<0)=F0)=5

. PLLEXE£1)=F1)-F-1)= 1 =.6875

P(X>5)=1-P(X £ .5 =1-F(5)=1-.6836=.3164

3a& 3x%0

. Fe= qu__§_+_ e X8 0, 37 X0 2=.003754- x*)
3 %

2% 34

F () = .5 by definition. F(0) = .5 from aabove, which s as desired.

k

v K k
p 1=0- (-2)QPb 1=—b k=3
(-3 3

1 QFpr 1:_X

i _ \X _\X -4 __§ -3)(__ -3 — _i
cdf: F(x)-Qf(y)dy—QSy dy = 3y 1- X +1=1 X3.SO
i 0, x£1
FIx)=i
) 1. x% x>1

Px>2)=1-F@=1-(1- 3)=1 or 125
PR<x<3=F@3)- F(2=(1- £)- (1- 1)=.963- .875=.088

®30,  *&30 32 3

E(X) = ) Xc—-dx = Hx=- = =0+_-=—

()= Qxe k=g ez ix=-5X 7| 2

coy = e § B o 3¢ 4 -0vana
ex' g ex g

_3.80 5 9_3
V(X) = E(x?) - [E(X)]? =3 ; 3- 2 =2oTs

= Nx) =% =.866

P(L5- .866 <x <1.5+.866) = P(x < 2.366) = F(2.366)
=1- (2.366°%) =.9245

134



14.

15.

Chapter 4: Continuous Random Variables and Probability Digtributions

If X isuniformly distributed on the interval from A to B, then
B 1 A+B A’ + AB+B?
E(X) = x* dx = E(X)=—«——
(X)=Q 5 A > (X%) 3

2
V(X) = E(X?) — [E(X)] = w .
With A = 7.5 and B = 20, E(X) = 13.75, V(X) = 13.02

10 X<75
FO) = [ 2= 'S 75£x<20

+ 125

% 1 x3 20

P(X £ 10) = F(10) = .200; P(10 £ X £ 15) = F(15) — F(10) = .4

s =361, som+ s = (10.14, 17.36)
Thus, P(m- s £ X £ m+ s) = F(17.36) — F(10.14) = 5776
Smilarly, (m-s £X £m+s) = P(653£ X £2097) =1

F(X)=0forx £0,=1forx 3 1,andfor0< X <1,
X

F(X)=Q, f(Y)dy = 990y°(L- y)dy =90Q)(y*- y°)dy
ooty - 4 y° ) =10%° - 9x°

1.0

F()
I

0.0

0.0 0.5 1.0

F(5) = 10(.5)° — 9(.5)*° » .0107

P(.25£ X £ .5) = F(.5) — F(.25) » .0107 — [10(.25)° — 9(.25)7]
» 0107 — .0000 » .0107

The 75" percentileis the value of x for which F(x) = .75
b .75=10(x)° — 9x)° P Xx».9036
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Chapter 4: Continuous Random Variables and Probability Digtributions

e EX)= C‘i x xf (X)dx :le>90x8(1- X)dx = 90(:1)x9 (1- x)dx
—ox- o1 = 8 5 8182
E(X?) = Q x? xf (x)dx —Qx x90x° (1- X)dx = 90(‘9x1°(1- X)dx
=20y sl ae1g
V(X) » .6818— (.8182)? = .0124, sy, =.11134.

f.  mts =(.7068,.9295). Thus, P(m- s £ X £ m+ s) = F(.9295) — F(.7068)
= .8465 - .1602 = .6863

a FX)=0forx<OandF(x)=1forx>2 ForOE£XE?2,
— 1,3

F9= Q3 y°dy=3y°]s =4

1.0 -

0.0 —

o
P
N

b. PxES5=F5=1(1) =&

c. P(25EX £ .5)=F(5) - F(.25) =L (1) =L ».0137

d. 75=Fx)=1x°p ¥=6pP x» 18171

e EX)= ciXXf (x)dx —Qx>(3 2)dx g :g(%x“)]z =3=1
€)= X ADC k=3 = (8] = £ =24

V)= 2- (2)?=2=.15 s,=3873

f. mts=(1.1127, 1.8873). Thus, P(m- s £ X £ m+s) = F(1.8873) — F(1.1127) = .8403 -
1722 = 6681
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Chapter 4: Continuous Random Variables and Probability Digtributions

a For2£XE4, F(X):c‘if(y)dy @%1 (y- 32]dy (etu=y-3)
, X-3
%, o _3€ WU _3é 7 (x-3)°U
=q 2l-vldu="@u- —py ==
Q al-wldi=gai- 50 =83 3 ¢
i 0 X< 2
F():}%[SX 7- (x- 3 2E XE 4
{ 1 X >4

(a- Thus

b. By symmetry of f(x), T =3

¢ EX)= xx%[l- (x- 3)2]dx=%é(y+3)(1- y?)dx

2 4

O/

@ ‘Pu
1
<
<
CDC c
11
I
S
w

1 B Br‘l+1 _ An+l
dx =
A (n+1(B- A

¢ E(X") = (‘fx” -
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Chapter 4: Continuous Random Variables and Probability Digtributions

a  PXXE£1)=F1)=.251+In()] » 597
b. PLEXE£3)=F3)—F(1)».966- 597 » .369

c. f(x)=Fqx)=.25In(4) - .25In(x) foro<x <4

y2
50

5

For 5£y £ 10, F(y) = é f(u)du = (‘9 f (u)du +Qy f (u)du

a ForO£y£5 F(y)—éiudu
Y ¥os

:%+ c—- __du =—Vy- -— -1

1.0 4

0.5 —

F(x1)

0.0 H

b. For0<p£.5,p:F(yp):)é—;|3 y, = (50p)"?

For 5<p£1 p—gy -y—rz’-lb y, =10- 5/2(1- p)
' " 57" 50 P

c. E(Y)=5Dby straightforward integration (or by symmetry of f(y)), and similarly V(Y)=
50
— = 4.1667. For thewaiting time X for asingle bus,

E(X)=25and V(X) = 2
' 12

E(eres) = E(pR%) = (), pr f (r)dr = 5lpr2§gl- (10~ r)? Jar

-39, O r(L- (100~ 20r +1r%) ki =3, Q- 99r?+20r" - r'dr =100
edg 4
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Chapter 4: Continuous Random Variables and Probability Digtributions

a ForlfEx£2 F(X):QXZg[- iz?jjy=2§+l$ —2€e +i9- 4, so
Y o Ya, € Xo
i 0 x<1
Fo=12(x+1)-4 1Ex£2
1|. 1 X>2

=

Zéx +—;-4 PP 2%°—(4—px +2=0P %= 1[4+ p+\,p +8p] To
find rr,setp—.5b m =164

2

e E0= e =9 =28%- %=X - (% =1614
O X g O™ X5 2 oA,

s
EXX?) = Z(i;(x2 - 1)dxzzaei- x% _8 P Va(X)=.0626
3 a3
d. Amount left = max(1.5- X, 0), so
2 15 1
E(amountleft) = (ymax(15- x,0) f ()dx=2() (L5~ 0)&- —
e

2

0
=dx
X @

, . , 9
With X = temperature in °C, temperature in °F = g X +32, so

19 9 &9
ES X +320=2(120) +32=248, Var& x +32%=2 290

g5 H 5 &5 i &g

sos =36

X(2)? =12.96,
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Chapter 4: Continuous Random Variables and Probability Digtributions

¥
kq k\i _qux—k+lg B kq
E(X)—QX X— - dx=kq kadx— -k+1Hq_k-l
E(X) =¥
EX?) = k et 1 dx = ka so
- q Q k-1 k 2’
aekq’ 0 aekq o _ kg ®

V”‘X)‘ék 25 &-1p (k- 2k-1

Va(x) =¥, since E(X?) = ¥.

M Ly kS n- (k+D) L o o
EX" =kq Q X dx , which will befiniteif n— (k+1) <-1, i.e. if n<k.

PY £181T +32) = P(L8X + £ 18T +32)=P(X £ T)= 5

90" for Y = 1.8n(.9) + 32 where h(.9) is the 90" percentile for X, since
Y £ 1.80(.9) +32) = P(L8X + 32 £ 1.8n(9) + 32)
= (X £h(.9)) = .9 as desired.

The (100p)th percentilefor Y is 1.8h(p) + 32, verified by substituting p for .9 in the
argument of b. When'Y =aX + b, (i.e. alinear transformation of X), and the (100p)th
percentile of the X distribution ish(p), then the corresponding (100p)th percentile of the
Y distributionis ah(p) + b. (same linear transformation applied to X’ s percentile)
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Chapter 4: Continuous Random Variables and Probability Digtributions

Section 4.3

26.
a PO£ZE£217)=F(217)- F(0)=.48%0

b. F@)- F(0)=.3413
c. F(0)- F(-250)=.4938
d. F(250)- F(-250)=.9876
e F(1.37)=.9147
f. P(-175<Z)+[1—P(Z<-175)] =1-F (-1.75) = .9599
g. F(2-F(-150)=.9104
h. F(250)- F(1.37)=.0791
i. 1-F(150) =.0668
i. P(|]Z|£250)=P(-250£ Z £ 2.50) = F (250) - F (-2.50) = .9876
27.
a.  .9838isfoundin the 2.1 row and the .04 column of the standard normal table so ¢ = 2.14.
b. POE£Z£c)=.291b F(c)=.7910p c=.81
c. P(c£EZ)=.121bp 1-P(CE£Z)=P(Z<c)=F()=1-.121=.8790pP c=117

d PcEZE£c)=F(c)-F(-c)=F()—(1-F(c)=2F(c)—-1
b F(c)=.9920b c=.97

e P(c£|Z])=.016 b 1-.016=.9840=1-P(c£|Z|)=P(|Z]| <c)

=P(-c<Z<c¢)=F()-F(c)=2F(c)-1
P F(c)=.9920 b c=241
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30.

Chapter 4: Continuous Random Variables and Probability Digtributions

F(c)=.9100 b c» 1.34 (.9099 isthe entry in the 1.3 row, .04 column)

9" percentile = -91% percentile=-1.34

F(c)=.7500 b c¢» .675since.7486 and .7517 arein the .67 and .68 entries,

respectively.

25" = 75" = _ 675

F(c)=.06 b c».-1.555 (both.0594 and .0606 appear asthe—1.56 and—1.55 entries,

respectively).

Areaunder Z curve above zggss is.0055, which implies that
F (Zooss) = 1-.0055 = .9945, 0 Zgps5 = 2.54

F(zg9)=.9100 b z=1.34(since .9099 appears as the 1.34 entry).

F ( Ze33) = areabelow zg33 = .3370 P Zg33 » -.42

P(X £ 100) = p?fz £ %9: P(Z £2) =F (200) = .9772
e

2

PX £80)= PEZE 80-806_psc0=F00)=5
& P

P65 £ X £ 100) = Pgﬁﬁ_—g.o £, £100- 806 P(-150£ Z £2)
e 10 10 g

= F (200) - F (-1L50) = .9772 - 0668 = .9104

P(70£ X) = P(-LO0£ Z) = 1 - F (-1.00) = .8413

P85 £ X £ 95) = P(50 £ Z £ 1.50) = F (150) - F (.50) = .2417

P(]X —80|£ 10) = P(-10£ X - 80 £ 10) = P(70 £ X £ 90)
P(-1L00£ Z £ 1.00) = .6826
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33.

34.

Chapter 4: Continuous Random Variables and Probability Digtributions

18- 15¢%
T=P(Z £24)=F (24) = 9452

2

a Rx£19=PEZE
e

b. POEX £12)=P(-400£ Z £ -2.40) » P(Z £ -2.40) = F (-2.40) = 0082

c. P(X-10/£2(125))=P(-250£ X-15£ 2.50) = P(125£ X £ 17.5)
P(-2.00£ Z £ 2.00) = .9544

a P(X>.25)=P(Z>-83)=1-.2033=.7967
b. P(X £.10) = F(-3.33) =.0004

c. Wewant thevalue of the distribution, c, that isthe 95" percentile (5% of the values are
higher). The 95t percentile of the standard normal distribution =1.645. Soc=.30+
(1.645)(.06) = .3987. Thelargest 5% of all concentration values are above .3987 mg/cnt.

a P(X310)=PZ3 43)=1-F(43)=1-.6664=.3336.
P(X >10) = P(X 3 10) =.3336, since for any continuous distribution, P(x = a) = 0.

b. PX>20)=PZ>4)»0
c. PGEXE£10)=P(-136£Z£ 43)=F(43)-F(-1.36) =.6664 - .0869 = .5795

d. P@B8-CcE£XE£88+c)=.98 5088—cand8.8+careat the 1 and the 99" percentile
of the given distribution, respectively. The 1% percentile of the standard normal
distribution has the value —2.33, so
88— c=m+(-2.33)s =8.8—-233(2.8) b ¢=2.33(2.8) =6.524.

e. Froma, P(x > 10) =.3336. Define event A as{diameter > 10}, then P(at least one A;) =
1-P(no A;)=1- P(A‘)4 =1- (1- .3336)4 =1- .1972 =.8028

Let X denote the diameter of arandomly selected cork made by the first machine, and let Y be
defined analogously for the second machine.
P29E£X £31)=P-1.00£ Z £ 1.00) = .6826

PRI9EY £31)=P(-7.00£ Z £ 3.00) =.9987
So the second machine wins handily.
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38.

39.

40.

Chapter 4: Continuous Random Variables and Probability Digtributions

a  m+sx91% percentilefrom std normal) = 30 + 5(1.34) = 36.7
b. 30+5(-1.555)=22225
c. m=3000nm;s = 0.140. We desirethe 90" percentile: 30 + 1.28(0.14) = 3.179
m=43;s =45
40- 439
a P(X<40)= sz£ 25 ——P(Z<-0667) 2514
. 2

P(x>60):Pgez>M9_P(z >3.778)» 0
- 45 g

b. 43+ (-067)(45)=39.985

P& 100 2000 _

P(damage) =P(X <100) = PCZ < ———+= P(Z -3.33) =.0004
e 300

P(at |east one among fiveis damaged) = 1 P(none damaged)

=1-(.9996)° =1-.998 = .002

From Table A.3, P(-(196£ Z £ 1.96) =.95. ThenP(m-.1£ X £ m+.1) =
1 16 A A
Pge_ <z< ——|mp||esthat—- 1.96, and thusthat S =—— =.0510
S g S 1.96

Since 1.28 isthe 90" z percentile (z; = 1.28) and—1.645 isthe 5" z percentile (205 = 1.645),
the given information implies that m+ s(1.28) = 10.256 and m+ s(-1.645) = 9.671, from
which s(-2.925) = - 585, s = .2000, and m= 10.

a P(m-15s £X£m+15s)=P(-1L5£Z £ 15) = F (L50) - F (-1.50) = .8664

b. P(X<m-25so0rX>m+25s)=1-P(m-25s £ X £ m+25s)
=1-P(-25£Z £25)=1-.9876=.0124

c. PMm-2s £EXEm-sorm+s £X £ m+2s)=P(within 2 sd’'s) — P(within 1 sd) = P(m-

2s EXEM+2s)-P(m-s £X£m+5s)
=.9544 - 6826 =.2718
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44,

45,

Chapter 4: Continuous Random Variables and Probability Digtributions

With m=.500 inches, the acceptable range for the diameter is between .496 and .504 inches,
S0 unacceptable bearings will have diameters smaller than .496 or larger than .504. The new

distribution hasm=.499 and s =.002. P(x < .496 or x >.504) =

496- .499 ¢ 504 - .4994
pgez< MQ+ pgez > MQ: P(z <- 1.5)+ P(z > 2.5)
e 002 g e 002 g

F (-1.5)+(1- F(2.5)) =.0068 +.0062 =.073, or 7.3% of the bearingswill be

unacceptable.

a  PB7EXET75)=P(-L00E Z £ 1.67) = 7938
C CO C C
b. P(70-c EXE70+0)= Pe— £7 £ -2=2F(Z)- 1=.95b F(<) =.9750
e 3 3g 3 3
§=1.96I3 c=588

c. 10P(asingleoneisacceptable) = 9.05
d. p=P(X<7384)=P(Z<128)=.9, s0P(Y £8)=B(810,9) =.264
The stated condition implies that 99% of the area under the normal curve withm= 10 ands =

2istotheleftof c—1,soc—1isthe 99" percentile of the distribution. Thusc—1=m+
$(2.33) =20.155, and c = 21.155.

a Bysymmetry, P(-L72£ Z £-55) = P(55£ Z £ 1.72) = F (L.72) - F (55)

b. P(-1L72£Z £ 55)=F(55)-F(-1.72) =F (55)—[1- F (1.72)]
No, symmetry of the Z curve about 0.

X ~N(3432, 482)

4000- 3432 5
a  P(x>4000)= PEZ 5, 4000- 34329
& 182 4

=1- F (1.18) =1- .8810=.1190
000- 3432 4000- 34325

P(3000< x < 4000) = P& <zZ< 2
& 482 482 g

=F (L.18)- F (- .90) = .8810- .1841=.6969

=P(z>1.18)

2000 - 23 - 34324
b. P(x < 20000rx > 5000) = PEZ < 2000- 34329, PeZ > 5000- 34329
e

g & 482 g
= F (- 2.97)+[1- F(3.25) =.0015 +.0006 = .0021
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c. Wewill usethe conversion 1 1b = 454 g, then 7 Ibs = 3178 grams, and we wish to find

P(x >3178)= P"’% 3178- 34329

+=1- F(-.53)=.7019
482 g

d. We need the top .0005 and the bottom .0005 of the distribution. Using the Z table, both
.9995 and .0005 have multiple z values, so we will use amiddievalue, £3.295. Then
3432+(482)3.295 = 1844 and 5020, or the most extreme .1% of al birth weights areless
than 1844 g and more than 5020 g.

e. Convertingto Ibs yields mean 7.5595 and s.d. 1.0608. Then

=1- F(-.53) =.7019 Thisyieldsthe same
1.0608

answer asin part C.

We use aNormal approximation tothe Binomial distribution: X ~ b(x;1000,.03) ~
N(30,5.394)

a  P(x3 40)=1- P(x£39)=1- PaPZEMO

5394 g4
=1- F (1.76) =1- .9608 = 0302
50.5- 30
b, Sof 1000=50 P(x£50)= P& £ 2> 9= F(3,80) » 1.00
& " 5304 4

P(X-m[3s)=P(X£m-s orX3 m+s)
=1-PM-sEXEM+s)=1-P(-1£Z£1)=.3174
Smilaly, P([X-m|3 2s)=1-P(-2£ Z £ 2) =.0456
AndP(|X -m|3 3s)=1—-P(-3£ Z £ 3) =.0026

a P@20-5E£XE£30+.5)=P195£X £305) =P-L1£Z £1.1)=.7286

b. P(at most 30) = P(X £ 30+ .5) = P(Z £ 1.1) = .8643.
P(less than 30) = P(X <30 - .5) = P(Z < .9) = .8159
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P: 5 6 8
m 125 15 20
S: 250 245 2.00
a
P(15€ X £20) P(14.5 £ norma £ 20.5)
5 212 P(.B0£Z £3.20) =.2112
6 577 P(-20£ Z £ 2.24) = .5668
8 573 P(-275£Z £ .25) =.5957
b.
P(X £15) P(normd £ 15.5)
885 P(z £ 1.20) =.8349
575 P(Z £ .20) =.5793
017 P(Z £-225) =.0122
C.
P(20 £X) P(19.5 £ normal)
002 .0026
029 0329
617 5987
P=.10; n=200; np =20, npq =18
a30+.5- 20¢ o
a P(X£30)—Fg =F (247)=.9932
V18 ﬂ
&9 +.5- 20¢ o

b. P(X <30)=P(X £29) = Fg = F (2.24) = 9875
N

C. PASEXE2D)=PXE£25)-PXE£14)=

ﬂ

&5+.5- 200 F314 5-200

S s 5§ vo

F (1.30) - F (-1.30) = .9032 - .0968 = .8064

N =500, p=.4,m=200, s =109545
a  P(180£ X £ 230) = P(1795 £ normal £ 230.5) = P(-1.87 £ Z £ 2.78) = .9666

b. P(X <175) = P(X £ 174) = P(normdl £ 174.5) = P(Z £ -2.33) = 0099
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Chapter 4: Continuous Random Variables and Probability Digtributions

P(X £m+ s[(lOOp)th percentile for std normal])

P(Z£[ .]) = pasdesired

a FRy)=RYLy)= P(aX+b£y)—Pa3X£(ya )Q(fora>0)
(4]

Now differentiate with respect to y to obtain
- 1 - 2
1 o W{y (am+b)]

¢
y(y) = Fy =
fy(y) (y) T2nas

and variance &’s>.

s0Y isnorma with mean am+b

b. Normal, mean 2 (115) + 32 = 239, variance = 12.96

3+351+562¢
o PEZ® D> Sxepd 0= 1587
@ 703+165 g
ae- 2362 §
b. Z>3)» 5xexpc——==.0013
Ae>3) P&300.3333,
s 32944

c. PZ>4)».5xexpc +=.0000317, so

€340.75g
P(-4 < Z < 4) » 1— 2(.0000317) = .999937

e 43929
d. PZ>5» 5xex 9_ 00000029
Az>9) P 3056 5
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Section 4.4

55.

56.

57.

58.

a Qg6)=5=

20_3 do_3 1 o aé-’:_\/—
p
e2g 2 lea 2 2 e2z e [7]

» 1.329

c. K45 =.371fromrow 4, column5of Table A .4
d. FG54)=.735

e FO4)=PXE£0,a=4)=0

a PX£5)=F57)=.238

b. P(X<5)=P(X £5)=.238

c. P(X>8=1-PXX<8=1-F@87)=.313
d. P(3EX£8)=F87)—F(37)=.653

e P(3<X<8)=653

f. PX<40rX>6)=1-PAEXE6)=1-[F67)—F(47)]=.713

a m=20,s°=80 b ab=20,ab’=80 b b= a=5

b. PXE£24)= Fgg—4;59: F(6:5) =.715
ed g

c. P@20E£XE40)=F105) - F(55) = 411

m=24, s?=144 b ab=24,ab’=144b b=6,a=4
a PA2E£XE£24)=F44)—-FH24) =.424

b. P(XE£24)=F(4;4) =.567, so whilethe mean is 24, the median islessthan 24. (P(X £
IT) = .5); Thisisaresult of the positive skew of the gamma distribution.
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c. Wewant avalue of X for which F(X;4)=.99. In table A.4, we see F(10;4)=.990. So with
b = 6, the 99" percentile = 6(10)=60.

d. Wewant avaueof X for which F(X;4)=.995. Inthetable, F(11;4)=.995, sot =
6(11)=66. At 66 weeks, only .5% of all transistors would still be operating.

=1

1
a. E(X) = I—

=1

1
b. S :|—

c. PXE£4)=1- eP® =1. ¢* = 982

d. PREXES=1- e WO . [1- e‘(l’(z)]:e‘2 -e°=.129

a PX£100)=1- (100001389 = 1. g 13% = 7499

P(X £200) = 1- @ (20001380 = 1_ o272 = 9375
P(100 £ X £ 200) = P(X £ 200) - P(X £ 100) = .9375 - .7499 = .1876

1

" 01386
P(X > m+ 25) = P(X > 72.15 + 2(72.15)) = P(X > 216.45) =

1- |.1_ e (21645)(.01386)] = @299 — 0408

=72.15,s=7215

c. 5=PXE£M)p 1- (MO0 = 5p g (MOXG = g

- 7(.01386) = In(.5) =.693P i =50

Mean = Il = 25,000 impliesl =.00004

a P(X>20000) = 1- P(X £ 20,000) = 1— F(20,000; .00004) = g (%9209 = 449
P(X £ 30,000) = F(30,000; .00004) = " -2 = 699
P(20,000 £ X £ 30,000) = .699- 551 =.148
1
b. S =I— = 25,000, so P(X > m+ 2s) = P(x > 75,000) =

1— F(75,000;.00004) = .05.
Similarly, P(X > m+ 3s) = P( x > 100,000) = .018
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63.

64.

65.

Chapter 4: Continuous Random Variables and Probability Digtributions

1 n
a EX)=ab= nl_ = l—; forl =.5n=10,E(X)=20
b. PX£30)= FE@;mQ: F(15;10) =.930

e2 g

c. PXEt)=Paleastneventsintimet) =P(Y 3 n)whenY ~ Poisson with parameter I t .

o ste't(it)
ThusP(X £f)=1-P(Y <) =1-RY£n-1) =1- § e
k=0 :

a {X*4=A1CA2CA3CA4CAs

b, POX® ) =P(A1) XP(A2) P(Az) P(As) (As)= (€1 =€ soR)=RXE

=1- €% ft)=.05e %" fort® 0. ThusX also haan exponential distribution , but

with parameter | =.05.

c. Bythesamereasoning, PX £f)=1- e "
parameter nl .

, S0 X has an exponential distribution with

With x, = (100p)th percentile, p=F(x)=1-€ ' ** b €' =1- p,
P -1x,=In1- p)P X, =M. Forp=5,xs = m:f’;ﬁ.

a {X2£y}:{- ﬁﬁXEﬁ}

b. PX?£y)= e Zz/2dZ . Now differentiate with respect to y to obtain the chi-

S5 1
On 20

squared p.d.f. withn =1
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Section 4.5

66.

a E(X)= 3G€'i+—$— 3 ><38@—19— 2.66,

Var(X)—QeG(1+1 GZEL_T =1.926

b. PXE 6)=1- e ®P" =1- ®¥ =1. ¢4 = 982

¢ PL5EX£6)=1- ¢ . ll- e (1'5’3)2J =e®-e*=.760

67.
a  P(X£250)=F(250:25, 200) = 1- @ (®0/200%° —1_ o175 5, 8057
P(X < 250) = P(X £ 250) » 8257
P(X > 300) = 1— F(300; 25, 200) = & ®*° = 0636
b. P(L00£ X £ 250) = F(250;25, 200) - F(100;25, 200) » .8257 - 162 = 6637
c. Themedian IT isrequested. Theequation F( IT) = .5 reduces to
~ 25
e m & _
5= ™207 o 15 - B9 o i = (6931)%(200) = 172727,
2200 g
68.

(x- 35)

a Forx>35FX =P(X£X)=P(X-35£x-35)=1-¢€

b. EX-35=15 ®0_1329% E(X) = 4.829
e2g

Va(X) = Va(x - 35) = (L5)’ gG(Z) G 853 O 483
€ 24

c. PX>5=1-PX£5)=1- [1- e‘lj =e'=.368

d PGEXEG=1-e°-|l- e!|=¢?- e°=.3679- .0001=.3678
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69.

70.

71.

72.

a

b.

C.

d.

X

a

b.

C.

a

b.

C.

— a a1 (}’b)a _ _a(i.ja _
m—Qxxb—ax e dX—(aftery—gEE,dy—

Chapter 4: Continuous Random Variables and Probability Digtributions

¥

\

ax??!

a

dx)

‘¥ ) 1 .
b Q y%e Ydy =b >G?.+ a—%ﬂby definition of the gamma function.

5=F(M=1-e™¥ p
e™'®=5p ii?=-9In(5) =6.2383P =250

1- el®3915° = 5p (M- 35)2=-2251n(5)=15506b 7 =475

P=F(x)=1-€ (x% )a P (%/b)* =-In(L—p) P x,=b[-In(L-p)]"

The desired value of t isthe 90" percentile (since 90% will not be refused and 10% will
be). From c, the 90" percentile of the distribution of X — 35is 1.5] -In(.1)]Y? = 2.27661,
0t=35+22761=5.7761

~ Weibull: a=20,0=100

F(x,20,b)=1- ¢ Iy e ®" =1. 070=.930

F(105)- F(100)=.930- (- e*)=.930- .632=.298

X

50=1-e® p ¢ = 50p -(x)? =In(50)

100

a"%é?:zom(. 50) b - x =100{%in(50) )b x =98.18
e (%]

s 20
E(X)=e® ?o=¢*2=123.97
V(X) = (6249+#) e # - 1)= (15,367.34)(8964) = 13,776.53
s =117.373

F(0.13)=.5517

I(100) - 4.5
P(x£100) = P& £ %9:
e .

7]

P(x3 200) = P&z wgzl- F(1.00) =1- .8413 =.1587 = P(x > 200)
e E a

153



Chapter 4: Continuous Random Variables and Probability Digtributions

EX) = e35+(1.2)2/2: 68,0835 V(X) = e2(3.5)+(1.2)2 >{e(1.2)2 - 1): 14907168:

Sy = 122.0949
& . In(250) - 3506 In(50) - 3.56
e x £250) = PRy £ 2207 330 b8 ¢ ING0) - 350
e 12 g e 12 I}
P(Z £ 1.68) — P(Z £ .34) = .9535 - .6331 =.3204.
g . In(680339 - 3.5¢
P(X £680335) = PcZ £ +=P(Z £ .60) = .7257. Thelognormal
e 1.2 2
distribution is not a symmetric distribution.
(- pEN(M - m )
S5=KI)= (where I refersto the lognormal distribution and mand
ﬂ
s tothe normal distri bution). Since the median of the standard normal distributionis0,
In(m)-m _ ~ ~ N
————=0,s0In(T)=mp M =e™. For the power distribution,
S
im=e* =3312

1.a:|:(z‘,i):|:’(z£za):gﬁrMEZG1 Q- P(n( X) £ m+sz,)
e S (%]

=P(X £ €™°%), sothe 100(1 - a)th percentileis €™ . For the power distribution,
the 951 percentileis @351:699(1-2) = 5474 = 93841

E(x) = €%(%0/? = g5%% = 149,157; var(x) = €*® e - 1) = 223,504

P(X > 125) = 1— P(X £ 125) =
1P & 1129 - 56_

=1- F(- 1.72) = 9573
e 1l o

aén(llO) 50
¢ 1
e - 2

P10£ X £125) =F (- 1.72) - =.0427- .0013=.0414

if =e> =148.41 (continued)
P(any particular onehas X > 125) = .9573 b expected # = 10(.9573) = 9.573

We wish the 5™ percentile, which is €% 169 = 12590
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76.
a EX)=e¥%'? =10024; va(x) = €38+ ><(e-81 - 1) =125.395, 5,=11.20

b. P(X £10) = P(In(X) £ 2.3026) = P(Z £ .45) = 6736
P(5£ X £ 10) = P(1.60% £ In(X) £2.3026)
=P(-32£Z £ 45) = 6736 - .3745= 2001

77. The point of symmetry must be 3, so we require that f (% - m) =f (% + m) e,

B-m ' E+m = +m (- M whichintum impliesthata =b.

78.
10

* RO @6

===.714,V(X)= 0255

~Nlo

(5+2)
b. f(X):a§%§5XX4 >(]_- X)=30(X4- xs)for0£X£1,

SOP(X £.2) = Q'Z:%o(x4 - x5)1|x =.0016
c. P(2EXE 4= (530(x4 - x5)dx=.03936

d EQ-X)=1-EX)=1- 3252.286

79.

e GogE o GRc be  a
cla+b) Cla+1cb) _ ac) _ ca+b) _ a

da+b) a+b

~—

Ga)db) Ga +b+1) Gla)db) @ +b

b. E@1-X)"= é(l- x)" %x“(l- x)°*dx

mb1 . Cla+b):Gm+b)

A A Ny ()
b

a+b

- G(a +b) xlxa-1
ca)db)?

Form=1E1-X)=
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80.
a EY)=10p EEEY 0_1__ 3 .\am=19, Vargiézﬁzi
620 2 a+b 7 é20g 2800 28
zab P a =3, b =3, after some agebra
(@ +b)*fa +b +1)
b. RBEXE1)= Fz 330 F&0 530-F(s39-F4:39).
€20 g é20 g
The standard density function hereis 30y2(1—y)?,
SOPBEXE£12) = (‘530y2(1- y)dy=.365.
c. Weexpectittosnapat 10,s0P(Y <8orY >12)=1-PB£ X £12)
=1-.365=.665.
Section 4.6

81. The given probability plot is quite linear, and thusit is quite plausible that the tension
distribution is normal.

82. The z percentiles and observations are as follows:

percentile observation

-1.645 152. 7

-1.040 172.0 -
-0.670 172.5 400

-0. 390 173.3

-0.130 193.0

0. 130 204.7 E w0

0. 390 216.5 = L

0. 670 234.9 200 <’

1. 040 262.6 . e

1. 645 422. 6 — . . . .

z %ile

The accompanying plot is quite straight except for the point corresponding to the largest
observation. Thisobservation is clearly much larger than what would be expected in anormal
random sample. Because of thisoutlier, it would be inadvisable to analyze the data using any
inferential method that depended on assuming anormal population distribution.
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83.

84.

Chapter 4: Continuous Random Variables and Probability Digtributions

The z percentile values are as follows: -1.86, -1.32, -1.01, -0.78, -0.58, -0.40, -0.24,-0.08,

0.08, 0.24, 0.40, 0.58, 0.78, 1.01, 1.30, and 1.86. The accompanying probability plot is
reasonably straight, and thus it would be reasonabl e to use estimating methods that assume a
normal population distribution.

1.8 —

13 — a®

thickness

0.8 —

z %ile

The Weibull plot uses In(observations) and the z percentiles of the p; values given. The
accompanying probability plot appears sufficiently straight to lead us to agree with the
argument that the distribution of fracture toughness in concrete specimens could well be
modeled by aWeibull distribution.

w
0.0 — L
]
-0.1 —H . « [}
»
-0.2 —H ab
»
a®
-0.3 — a”
=
< a
c 04 — -
_05 -
w
-0.6 —
-0.7 —
w
-0.8 —
T T T T T
2 1 0 1 2
z %ile
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86.
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The (z percentile, observation) pairs are (-1.66, .736), (-1.32, .863), (-1.01, .865), (-.78,
913), (-.58, .915), (-.40, .937), (-.24, .983), (-.08, 1.007), (.08, 1.011), (.24, 1.064), (.40,

1.109), (.58, 1.132), (.78, 1.140), (1.01, 1.153), (1.32, 1.253), (1.86, 1.394). The

accompanying probability plot is very straight, suggesting that an assumption of population
normality is extremely plausible.

1.4 — »

1.3 —

1.2 —

11 — | ]

obsvn

1.0 — "

0.9 — Dl

0.8 —

0.7 —

a.  ThelOlargest z percentilesare 1.96, 1.44, 1.15, .93, .76, .60, .45, .32, .19 and .06; the
remaining 10 are the negatives of these values. The accompanying normal probability
plot isreasonably straight. Anassumption of population distribution normality is

plausible.
500 — [
400 —| . ®
a
2 300 —| e ®
% «®®
S 200
-l
100 —| R
[ ] a
L]
0
T T T T T
2 1 0 1 2
Z %ile
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b. ForaWeibull probability plot, the natural logs of the observations are plotted against
extreme value percentiles; these percentiles are -3.68, -2.55, -2.01, -1.65, -1.37,-1.13, -
.93, -.76, -.59, -.44, -.30, -.16, -.02, .12, .26, .40, .56, .73, .95, and 1.31. The
accompanying probability plot isroughly as straight as the one for checking normality (a
plot of In(x) versusthe z percentiles, appropriate for checking the plausibility of a
lognormal distribution, is also reasonably straight - any of 3 different families of
population distributions seems plausible.)

In(loadiife)
o
|

W %ile

To check for plausibility of alognormal population distribution for the rainfall data of
Exercise 81 in Chapter 1, take the natural logs and construct anormal probability plot. This
plot and anormal probability plot for the original data appear below. Clearly the log
transformation gives quite astraight plot, so lognormality is plausible. The curvaturein the
plot for the original dataimplies apositively skewed population distribution - like the
lognormal distribution.

3000 — 8 —

2000 —

rainfall
1 ]
«
In(rainfall)
N

1000 — » S .

,uﬂ"'. 1
0— » v mase®I" 2
T T T T T
2 -1 0 1 2

z %ile

z %ile
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a. Theplot of theoriginal (untransformed) data appears somewhat curved.

precip

z %iles

b. Thesquareroot transformation resultsin avery straight plot. It is reasonable that this
distribution is normally distributed.

2.0 1
e
L
1.5 °
A t”
a __l'
-
niw
1.0 - N
amn
»
.
-
0.5
T T T T T
2 1 0 1 2
z Yiles

C. The cube root transformation also results in avery straight plot. It isvery reasonable that
the distribution is normally distributed.

16 —

=
2
— o
3 11 pus®
pan
_—
-
06 —
T T T T T
2 1 0 1 2
z %iles
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89. The pattern in the plot (below, generated by Minitab) is quite linear. It
is very plausible that strength is normally distributed.

Normal Probability Plot

.999 1
.99 A
.95

.80
.50 A

Probability

20
.05 4
01
001 4

Average: 134.902
StDev: 4.54186
N:153

125 135

strength

145

Anderson-Darling Normality Test

A-Squared: 1.065
P-Value: 0.008

90. We use the data (table below) to create the desired plot.

ordered absolute z
values (w's) probabilities values
0.89 0.525 0.063
1.15 0.575 0.19
1.27 0.625 0.32
1.44 0.675 0.454
2.34 0.725 0.6
3.78 0.775 0.755
3.96 0.825 0.935
12.38 0.875 1.15
30.84 0.925 1.44
43.4 0.975 1.96
2 [ ]
e
1]
% [ ]
Ele
N [
[ ]
[ )
[ ]
o le
T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45

Thishalf-normal plot reveals some extreme values, without which the distribution may appear

to be normal.
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The (100p)th percentile h(p) for the exponential distribution with| = 1 satisfies F(h(p)) = 1—
155

expl-h(p)] =p.i.e, h(p) =-In(1-p). Withn=16, weneedh(p) forp= =,32,...,22.

These are .032, .398, .170, .247, .330, .421, .521, .633, .758, .901, 1.068, 1.269, 1.520, 1.856,
2.367, 3.466. this plot exhibits substantial curvature, casting doubt on the assumption of an
exponential population distribution. Becausel isascale parameter (asiss for the normal
family), | = 1 can be used to assess the plausibility of the entire exponential family.

600 —
L J
500 — »
400 —
u @ .
Q
£ 300 o ®a
8 v
200 —| 21"
100 4
0o— &
T T T T T T T T
00 05 1.0 15 20 25 3.0 35
percentile

Supplementary Exercises

92.

10
a PIOEXE2)= —=4
25

b. PX:3 10)=P(10£X£25)=§=.6

X

c. For 0EXE£25 KX = Q%dyzz—);. F(x)=0for x <Oand=1for x> 25,

2
0 oo AtB)_(0+2) oy (B A 85 o
2 2 12 12
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93.

94,

C.
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i 0
- . y<0
| 3
=118 Y% opyen
148 185 o
i1 Y

P(Y £ 4)=F(4) = 259, (Y >6)=1-F(6) = 5
P(4£X £6)=F6)— F(4)=.5-.259= 241

_le yo, 167 yiu_
EY)= = y*el- 22dy=— & =6
=20V 5" uEs 8%
E(Y?) = iéz y3$'i- lgdy=43.2,soV(Y):43.2—36:7.2
24 e 12g

PY <4orY >8)=1-PAE£X £8) =518

the shorter segment has length min(Y, 12-Y) so
Emin(y, 12- V)] = & min( y12- y) xf (y)dy= min(y.12- y) xf (y)dy

K

i -3 X 2 - X :@:
+Q Min(y12- y) xt (y)dy=QyxT(y)dy+@ (12- y)xf(y)dy = —-=.375

Clearly f(x) 2 0. Thec.df.is,forx>0,

. e 2 1 3 U 16
R iR o S e

(F(x)=0forx £0.)
Since F(¥) = (‘i f (y)dy =1, f(x) isalegitimate pdf.

See above

16 166_
2EXEB)=F5)-F2)=1- —- = =247
¢ 5 =F5-F?2 a1 ? B,

(continued)
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96.
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o

E(x):c‘iXXf(x)dx:&xxidxzé(x+4— )2

e o
¥ 32 ¥ 32 _ _
_Q(X+4)2dX- 4Q(X+4)3dx—8-4—4
¥ 100 32 ¥ 1 3200
. E(sa aug)= =) ——x———dx=3200¢ dx= =16.67
e 2 Ea ] 2 e T

a. By differentiation,

i x? 0f x<1
=113 1gyel

i4 4 3

i O otherwise

3
b. P(5EXE=F2)—F(5)=1- E88—7-2‘3"€-§>Q9-ﬂ:£=.917
2e3 @4 4 g 3

c. EX)= lexxzdx+(;)%x>€4- %xgdx—%—lﬂs
e a

m=40V; s=15V

aéLZ 400 8(39 400
$15 5 ' § 15 5
= F(1.33) - F (-.67) = .9082 - .2514 = 6568

a PBE9<X<42)=F

b. Wedesirethe 85" percentile: 40+ (1.04)(1.5) = 41.56

c. PX>42)=1-P(X£42)=1 - Fged'z 400_,. F (1.33) =.0918

(%]
Let D represent the number of dlod&e out of 4 with voltage exceeding 42.

PD3 1)=1-PD=0)=1- gg(.ogls)"(.gosz)“:l- 6803= 3197
a
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98.

99.
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m=137.20z.; s=1.60z

2 Prx>139-1- FE35- 13726,

2=1- F(-1.38)=1- .0838=.9162
é o

b. WithY =the number among ten that contain more than 135 oz,
Y ~Bin(10, .9162, so P(Y 3 8) =h(8; 10, .9162) + h(9; 10, .9162)
+b(10; 10, .9162) =.9549.

c. m=1372: 1%-137.2_ 165b s =1.33

S

a Let S=defective. Thenp=P(S)=.05;n=250p m=np=125,s =3.446. The
random variable X = the number of defectivesin the batch of 250. X ~ Binomial. Since
np =12.53 10, and nq = 237.53 10, we can use the normal approximation.

POXoin® 25)» 1 - FEor>" 12901 £ (3.48)=1- .9997 = 0003
e 3446 gy

b.  P(Xpin = 10) » P(Xporm £ 10.5) - P(Xnorm £ 9.5)
=F(- .58)- F(- .87)=.2810- .1922= 0888

a PXX>100)=1- Fgé%?:l- F(29)=1- .6141=.3859
e %)

b, P(50<X<80):|:§0' %Q_Fgéo' %66
e 14 g ¢ 14 g

=F (-15) - F (-3.29) = .1271 - .0005 = .1266.

c. a=5" percentile= 96 + (-1.645)(14) = 72.97.
b=95" percentile= 96 + (1.645)(14) = 119.03. Theinterval (72.97, 119.03) containsthe
central 90% of all grain sizes.
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100.
a FX)=0forx<land=1forx>3. Forl£xX£3, F(x)=c‘i f(y)dy
= O0dy+ ¢ —x—dy 151¢1- —=
= 0,0+ 9 g 0
b. P(X£25)=F25)=151-.4)=.9; (L5£x£25)=
F(25) - F15)= 4
3 31 331 3
c. EX)==Qx*=x—=dx=—0n—dx=1.5In(x)|, =1.648
®==0 2 x° 7 9% M)]
N 31 33
d E(X)—=Qx x—x—dx-—de 3,20 V(X) = E(X?) - [E(X)]* = 284,
2 x°
s =553
i 0 1£X£15
e h}=1x-15 15£XE25
g 25EXE3
25 3 1 3. 3 1 _
0 E[h(X)] = = ). (x- 1.5) Xz O QL dx = 267
101.

(%)

b. FX)=0forx<-lor==1forx>2 For-1£X£2,

x1 5 le x*0 11
F(X)=—\4- =—CAX- —3+—
) QQ( y )dy 9§ 3g 27

c. ThemedianisOiff F(0) = 5. Since F(0) = 3, thisisnot the case. Because 1< .5, the
median must be greater than 0.

d. Yisabinomia r.v.withn=10andp=P(X>1)=1- F(l)——
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103.

104.
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=1075

PBO<X)=1-P(XX £30)=1-F30) =339 = o614
P(LOE X £ 3.0) = F3.0)— F(1.0)=.333

The 90" percentile is requested; denoting it by ¢, we have

9=F()=1-e"9* whencec = (Y _ 2.476
-.93)
P(X £ 150) = exp3~ ap?%% exp[- exp(0)] = exp(- 1) =.368 , where
e e

exp(u) = €". P(X £300) = exp| - exp(- 1.6667)] =.828,
and P(150 £ X £ 300) = .828 - .368 = .460.

The desired value c is the 90" percentile, so ¢ satisfies
é c- 150) & . . . .
9= eXpa enga(T)i Taking the natural log of each side twice in succession
e e

- (c- 150)

yieldsIn[ In(.9)] = , S0 ¢ = 90(2.250367) + 150 = 352.53.

x) = FIX) = ixexpg expe (x- a)%mxpae (x-a)
b g CPET T AeRET

We wish the value of x for which f(x) is amaximum; thisisthe same asthe value of x for
din{f(x ,
In(f N _ g gives

which In[f(x)] isamaximum. The equation of q
X

2 (x-a)o - (x-a)

expngzl, so

E(X) =.5772b + a = 201.95, whereas the mode is 150 and the median is
—(90)In[-In(.5)] + 150 = 182.99. Thedistribution is positively skewed.

=0, whichimpliesthat x =a. Thusthe modeisa.

c

E(cX) =cE(X) = |

d.5 - a

¥
Elc1- 5™ = cll- .5e™ |4 e *dx =
ot 5] = )k P e =2
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105.
a.  Fromagraph of f(x; ms) or by differentiation, x* =m
b. No; the density function has constant height for A £ X £ B.
c. Hxl)islargest for x = 0 (the derivative at 0 does not exist since f is not continuous
there) so x* = 0.
a X
d. I f(xa,b)=-In(b?)- In(Gla))+(a - )In(x)- o
d a-1 1
—In fixa,b)]=——-—b x=xX=(@ -1b
S fxa,b)l==—=-— @-1
e. Fromd x* =(°:;e—‘- 15(2)=n - 2.
€2 g
106.

a  Q f(¥dx=,ledx+ ().1e dx=5+ 5=1

010 —
0.09 —
0.08 —
0.07 —
0.06 —
0.05 —

fx

0.04 —
0.03 —
002 —
0.01 —

0.00 —

X

b. Forx<O,FXx)= Q Je?dy = % e*.

1 X .2 1 .2
Forx3 O,FX) ==+ .1le “Ydy=1- —e “*.
2 Q y 2

c. PX<0)=F0)= %:,5, P(X <2)=F(2)=1- .5 = 665,

P(1EX £2)—F(2)— F(-1)=.256,1- (2£ X £2) = 670
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107.
¥
a. Clearly f(x;11,15,p)3 Oforal x, and Q f(xl 4,15, p)dx

—Q[pl ' +(1- p)le' ]dx pQIle " dlx + (1 - p)QIZe 2 dix
=pt(1-p=1

b. Forx>0,Fxl,12, p)=éf(w Lo, p)dy=p- e') +(1- p)d- e'?).

e EX= xdpl ')+ p)l e H)x
v oo Yoo 1- p)

— N\ I led + 1_ hY XI |2Xd — p +(
pQ Xl & “dx+(1- p)g X & “dx T

1 l 2

2 2p . 21- ép (1- p)u
d. E(X)__p+ (lzli)),sovar(x):_f+ (Izp)_é|£+(| p)Lj
1 2 1 2 €1 2 U
e. For anexponential r.v.,CV = }/ =1. For X hyperexponential,
é u}/z
é2p,2(-p) G
é 2 2 , N
Cv_g'l—'zz_lu _§2(pI§+(1- D)l f) 197
Tgep o) g & )
e+ &pl ,+@- pI,)" g
gala 120 H

2 2
(pl 2+ (- p)l 12 . But straightforward algebra shows that r >
(pl 2 +(1' p)| 1)

1provided | ; 1 | ,,sothat CV > 1.

=[2r—1)Y? wherer=

n n n
—_, s?=— S0 S :I— andCV:i<1ifn>l.

| 2 Jn
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108.
¥ k 5la N
a 1:Q—adx kx——pb k= (a - 1)5 & wherewe must havea > 1.
X a-1
AY "a'l
b. Forx3 5 FXx)= Qidy g € 1. 119= . gé_59
& xty exg
¥ k ¥ k k
c. EX)= Qxx—dx= x*x—dx= , provideda > 2.
Q X2 Q N 5a-2 ><a _ 2)
N a-1
d. Pg’ng——E y2=pP2 e’ 0= P(x £5¢") = F(se’)=1- B0
ebg eb o} ese’ g
1- e - 1)y,the cdf of an exponential r.v. with parameter a - 1.
1009.
&, 0
a.  Alognormal distribution, since In g—: isanormal r.v.
li g
5 o
o, (1, >21)=pfe > 2% pdn e §>|n2——1 P ogglnz—
Ii o éli a || a
@n2-10_1 r( g14)=1
ﬂ

o) o]
c Eg; Q_gronsz _p7n Varg—: @2+0025 ><(e.0025 ) 1) - 0185
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110.

111.

112,

Chapter 4: Continuous Random Variables and Probability Digtributions

1.0

0.5 —

c2

0.0 —

T T T T T T
0 50 100 150 200 250

C1

(i
b. P(X>175)=1-F(175;9,180) = € & - 4602
P(150 £ X £ 175) = F(175; 9, 180) - F(150; 9, 180)
= 5398- .1762 = .3636

c. P(atleast one) = 1— P(none) = 1 — (1 - .3636)> = .5950

x o
d. Wewant the 10" percentile: .10=F(x; 9, 180)= 1- € ] . A small bit of algebra
leads usto x = 140.178. Thus 10% of all tensile strengths will be lessthan 140.178 MPa.

) s (ym L,
Fy)=P(Y £y)=P(sZ+mEy) = PRZ £ y-mo_ & L &%z Now
e S o J2p
differentiate with respect to y to obtain anormal pdf with parameters mand s.

=AY £y) =Peox £y) = PEX £ L= FEY :a? Thust
a K=K y) =H y) g 804 gﬁaﬂ us fy(y)

Y
&y . 9\/ 1 _ ya-1e60b

€600 5 600 ~(60b)* )
with parametersa and 60b.

=f , Which shows that Y has a gamma distribution

b. Withcreplacing60in a, the same argument showsthat cX has agammadistribution
with parametersa and cb.
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114.

115.

Chapter 4: Continuous Random Variables and Probability Digtributions

Y =-n(X) b x=¢Y =Kk(y), sokdy) =-€”. Thussincef(x) =1,
gly) =1x-e¥|=¢eY for0<y<¥, soy hasan exponential distribution with parameter |
=1

y=sZ+mb y=h()=sZ+mb z=k(y) = M andkd(y):i,fromwhichthe
S S

result follows easily.

1
y=hX)=cx b x=k(y) = Y and kq(y) = —, from which the result follows easily.
C C

Ifweleta =2 and b = +/2s , thenwecan manipulate f(v) asfollows:

f(n)zlze-nz/zs2 _ 2 ne s’ = 2 nz-le-(n/‘/_%)2 _4a
S

2g 2 («/_S)Z b?

whichisinthe Weibull family of distributions.

a1y (%)2

n

200 -2

F(n)ZQZS%e%dn;cdf: F(‘|;2,—\/_$):1- e_ 50=1-@™ g0

F(25:2,42)=1- ¥ =1- 458 = 542

Assuming independence, P(all 3 births occur on March 11) = (3—25)3 =.00000002

() (365) = 0000073
Let X = deviation from due date. X~N(0, 19.88). Then the baby due on March 15 was4
daysearly. P(x =-4)" P(-45<x<-35)

=p@350 2 450 (. 18). F(- 237)=.4286 - .4000 =.0196 .
€l9.88g &19.88g»

Similarly, the baby due on April 1 was 21 days early, and P(x = -21)

-F& 2050 g2 21-30_ (1 03)- F(- 1.08) =.1515 - 1401 =.0114.
21988 g ¢é19.88 g

The baby due on April 4 was 24 days early, and P(x =-24) ~ .0097

Again, assuming independence, P( al 3 births occurred on March 11) =
(.0196)(.0114)(0097) = .00002145

To calculate the probability of the three births happening on any day, we could make
similar calculationsasin part c for each possible day, and then add the probabilities.
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116.
| e
a Fx=le' adFx)=1- &' sor(x)= ——=| , aconstant (independent of X);
(S
thisis consistent with the memoryless property of the exponential distribution.
0
b. rx)= gb— x?"1: for a > 1 thisisincreasing, while for a < 1 it is adecreasing function.
(%]
X0 é x? u “age %3
c. In(l-FX)=- Oagl —xx=-aax- —P F(x)=1-e 2
b g € 2by
A
f6)=a —12e R 0E£XED
b g
117.
a F= PE Iiln(l- U)£x3=P(In(1- U) -1 x)=PL- U3 ')
e (%]
= P(U £1- e"x) =1- e '*since Fy(u) = u (U isuniformon [0, 1]). ThusX hasan
exponential distribution with parameter | .
. . . 1
b. By taking successive random numbers uy, Uy, Ug, ...and computing X, = - 1—|n(1- u, )
... we obtain a sequence of values generated from an exponential distribution with
parameter | =
118.

a. E(g(X)) » E[g(m +gqm(X - m] = E(g(m)) + g&m*E(X - m), but E(X) - m= 0 and E(g(M)
=g(m ( since g(M is constant), giving E(g(X)) » g(m.
V(g(X)) » Vg +gam(X - m] = V[gm(X - m] = (@m)>¥/(X - m) = (gm)*x/(X).

b. g(l):TV,gq.):'l_ZV,soE(g(.)):

.2

V(gu))»‘%v% W) S =
(%]

Y=Y
m 20

119.  g(m +gdqm(X - m £ g(X) impliesthat E[g() + g&m)(X - m] = E(g(M) = g(m £ E(9(X)). i.e.
that g(E(X)) £ E(9(X)).
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2 " 2 ® b )
120 For y>0, F(y) = P(Y £ y) = Peor—£ yo= PEX” £ 2 Y= pex E—\NT. Now
b 5 & 25 & 23

by

take the cdf of X (Weibull), replace x by T , and then differentiate with respect to y to
2

obtain the desired result fy (y).
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CHAPTER 5

Section 5.1

a PX=1Y=1)=pll)=.20
b. PX£1landY £1)=p(00)+p(0,1) +p(1,0) + p(L1) = .42

c. Atleastonehoseisinuseat bothislands. P(X* OandY 1 0)=p(1,1) +p(1,2) +p(2,1)
+p(2,2)=.70

d. By summing row probabilities, p«(x) = .16, .34, .50 for x =0, 1, 2, and by summing
column probabilities, py(y) = .24, .38, .38fory =0, 1, 2. P(X £ 1) = px(0) + px(1) = .50

e.  P(0,0) =.10, but py(0) x py(0) = (.16)(.24) =.0384* .10, so X and Y are not independent.

2.
a
y
p(x.y) 0 1 2 3 4
0 .30 05 025 025 10 5
X 1 18 .03 015 015 .06 3
2 12 02 01 01 04 2
.6 1 05 05 2
b. PX£1landY £1)=p(0,0)+p(0,1) +p(1,0) + p(1,1) = .56
=(8)(.7)=PXEL XY £1)
c. P(X+Y=0=PX=0andY =0)=p(0,0)=.30
d. PX+Y £1)=p(0,0)+p(0,1) +p(1,0)=.53
3.

a. p(1,1) = .15, theentry in the 1% row and 1% column of the joint probability table.
b. P(X1=X3)=p(0,0) +p(1,2) +p(2,2) + p(3,3) = .08+.15+.10+.07 = .40

C A={ (%) %3 2+%}E { (%)% 2+x}
P(A) =p(2,0) + p(3,0) + p(4,0) +p(3,1) + p(4,1) +p(4,2) +p(0,2) + p(0,3) + p(1,3) =.22

d. P(exactly4)=p(1,3) +p(2,2) +p(3,1) + p(4,0) = .17
P(at least 4) = P(exactly 4) + p(4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3)=.46
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P1(0) = P(X1 =0) =p(0,0) + p(0,1) + p(0,2) + p(0,3) =.19
Py(1) = P(X1 = 1) = p(1,0) + p(L,1) + p(1,2) + p(1,3) = .30, etc.

X1 ‘ 0 1 2 3 4

P,(0) = P(X, = 0) = p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc

X ‘ 0 1 2 3

p2(%) ‘ 19 .30 .28 23

p(4,0) =0, yet p1(4) =.12>0and pz(0) =.19>0, sop(x1 , %) * P1(xa) Xp2(%e) for every
(X1 , %), and the two variables are not independent.

P(X =3,Y =3) = P(3 customers, each with 1 package)
= P( each has 1 package | 3 customers) xP(3 customers)
=(.6)° x(.25) = .054

P(X =4,Y =11) = P(total of 11 packages | 4 customers) xP(4 customers)

Given that there are 4 customers, there are 4 different waysto have atotal of 11
packages. 3, 3,3,20r3,3,2,30r3,2,3,3 or 2, 3,3, 3. Eachway has probability
(:1%(:3), 0 p(4, 11) = 4(.1)*(:3)(.15) = .00018

P42 =P(Y =2|X =4) xP(X = 4) = %ig(ﬁ) 2(4)? E>(.15) =.0518
) Q

P(X =Y) =p(0,0) + p(1,1) + p(2,2) + p(3:3) + p(4.4) = .1+(.2)(:6) + (.3)(.6)> + (.25)(.6)°
+(.15)(.6)* = 4014
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p(x,y) =0unlessy =0, 1, ...,x;x=0, 1, 2, 3, 4. For any such pair,

a0
pixy) =P(Y =y [ X =X) xP(X =X) = gyé(ﬁ)y (:4)7 xp, (x)

py(4) = p(y = 4) = p(x = 4,y = 4) = p(4,4) = (:6)*X.15) = .0194

Ao
b3 =p(33) +pa3) = (.6)3(.25)+ gsgj.a) 3(.4)(.15) = .1058
4]
2 a0, .,
py(2 =p(2.2) +p(32) +p(4,2) = (.6) (-3)+g2;i-6) (.4)(.25)
4]
+ 29 6y (4)2(15) = 2678
£
a0
py(D) =p(LD) +p(22) +p(32) +p(4.1) = (.6)(.2) + gli(ﬁ)(-4)(-3)
/]

gg(ﬁ)(_4)2(_25) + g%.e)(.4)3(.15) =.3590
2 P

py(0) = 1— [.3590+.2678+.1058+.0194] = .2480

p(1,1) =.030
PX£1landY £1=p(0,0) +p(0,1) + p(1,0) + p(1,1) =.120
P(X =1) =p(1,0) + p(1,1) + p(1,2) =.100; (Y =1) =p(0,1) + ... + p(5,2) = .300

P(overflow) =P(X +3Y >5)=1-P(X +3Y £5) = 1-PF[(X,Y)=(0,0) or ...or (5,0) or
ODor(L1)or(21)]=1-.620=.380

The marginal probabilitiesfor X (row sumsfrom the joint probability table) are p«(0) =
05, px(1) =.10, p«(2) =.25, px(3) = .30, px(4) = .20, p«(5) = .10; thosefor Y (column
sums) are py(0) = .5, py(1) = .3, py(2) = .2. Itisnow easily verified that for every (x,y),
p(x,y) = px(X) *py(y), so X and Y are independent.
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a  numerator = gg Zogfo (56)(45)(12) 30,240
%]

30,240 _

300
denominator = + =593,775;p(3,2) =
€6 593,775

1 o820 12 0 X,y_are_non- negative

i gxé ygfi (x+ y) int egers_such_ that

b p(xy) =1 a306 O£ x+Yy£6
: g 6 5 .
f 0 otherwise

a 1= é&f(xy)dxdy Q}q}K(x + y*)dxdy

30 30

\ N\

Kq)Q)xzdydx+ KQQ)y dxdy = 1OKq)x2dx+1OKQ)y

= 20K >€Elg’0009b K=
& 3 g 380,000

26 26 2 2 _ 26 2
b. P(X<26andY <26)= Q)Q)K(x +y )dxdy-lZKQ)x dx

4Kx3|2z =38,304K =.3024

y=ez s y=x2

20

20 30

P(IX-Y[£2)= (@f (X,y)dxdy

region
11

1- @f (x y)dxdy - gf (x, y)dxdy
| 1l

2830 30
1- Q0. f (x, y)dydx - Q

= (after much algebra) .3593

-2

é) f (x, y)dydx
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fAX) = N _ 0 2 2 _ 2 y3 ?
M= Q, f(x y)dy—QJK(x +y?)dy =10Kx* + K?
20

= 10K + .05, 20£X£30

fy(y) is obtained by substituting y for x in (d); clearly f(x,y) * fy(X) xfy(y),so X and Y are
not independent.

il 5EXE£65L£YE6
f(xy) = | .
i0 otherwise

sincefy(x)=1,f,(y) =1for SEXE£6,5Ey£6

P(5.25£ X £5.75,525£ Y £5.75) = P(5.25 £ X £ 5.75) xP(5.25 £ Y £ 5.75) = (by
independence) (.5)(.5) = .25

y=x+1/6 [ y=x-1/6

5

5

R(XY)T A)= qjdxdy
A

—areaof A=1—(areaof | +areaof I1)

-l x - MY
Xx——forx=0,12,...;¥y=0,1,2, ...

y!

p(x,y) =

pO0) +pOY) +pLo)= e "[L+1 +m]

P(X+Y=m)= ém P(X =k,Y =m- k) —ém e"'mi ™
=0 ’ bl k! (m- K)!
e!™Mgang, . e +m"
ag 1 mT T = , o the total # of errors X+Y also hasa
I'T'I k=0 kg m

Poisson distribution with parameter | + 1 .
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_ NN - X(1+y) — N - X —
P(X>3) = QQXxe dydx = Q¢ dx =.050

¥
The marginal pdf of X is @ xe*®Ndy = e for 0£x; that of Y is

(S xe "N dy =

a )2 forO£y. Itisnow clear that f(x,y) is not the product of
ty

the marginal pdf’s, so thetwo r.v’s are not independent.

P( at least oneexceeds3) =1—-P(X £3andY £ 3)

=1- Qéxe'x(“”dydle- Qéxe'xe'xydy

-1- ée'x(l- e¥)dx =e? +.25- 2512 = 300

f(x,y) = fx(x) fy (y) e x20y?0
X)Y) =T X = .
Y ’ % 0 otherwise

PX£landY £1)=PX £1) <Y £1)=(1—¢?) (1-e™) = .400
22X 2 4 (2 X
RX+Y£2)= Q € dedx:Qe [1-e( ’]dx

2
=Qe”- e?)dx=1- e?- 2e% =504

PX+Y £1)= @le'x[l- e'(“)]dx:1- 2et =.264,
SOP(1EX+Y £2)=P(X+Y £2)—P(X +Y £1) = 594 - 264 =330

P(X1<t,Xo<t,...,X10<t) =P(Xy<t)... P(Xyg<t) = (1_ e—It)lO

If “success’ = {fail beforet}, then p = P(success) = 1- e'",

2209
and P(k successesamong 10trials) = & =1- ' (1) 10k
&k

P(exactly 5fail) = P( 5 of | 'sfail and other 5 don’t) + P(4 of | 'sfail, mfails, and other 5
90, 89

dont)=¢ o1- e Pe) le™)+g - et)'[1- em)e')
ks 2%
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Fy)=P(Y £y) =P[(X1£Y) E (X2£Y) C (X3 £Y))]
=PX1£Y)+P(X2£Y) C Xz £Y)] -P(X1 £Y) C (X2£Y) C (X3 £Y)]
= (L-e"Y)+@-e")*-(@1- ") fory3 0

fy)=Fay)= | €'Y +2(1- e")( €")- 31L- &) (1 &)
=4 e?-3e? fory:0

Ev)= gy Hdal e -3 e by = 235&9_ 1.2
a

N I-x-%
foa )= Q, T (XX, X5)d, =@ kX, (1- x,)dx,

72%,(1- % J1- X, - X5)° 0£x,0£36, % +x£1

P(X; + X3 £ 5) = 66%72@(1- X)L~ X - X5)2dx,dx,
= (after much agebra) .53125

f (%)= C‘i f (%, %;)dx, = (‘)72x1(1- % )1- X, - %, )" dx,

18x, - 48x7 +36x’ - 6X;  O0£x £l

P((X,Y) within acircle of radius %) = P(A) = @f (x, y)dxdy
A

. 2
PQ- EE X £_R _Egy EEQ_i _1
2 2
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)
A=

. 2
PQ-EEXE Reyg RO-R _2

2P RTRT P 2s PR b
f() Jdre 1 24 R? - x

Q f(x y)dy = Ompl-?z dy = pF<2 for—REX£R and
smilarly for fy(y). X andY are not independent since e.g. f4(.9R) =fy(.9R) > 0, yet
f(9R, .9R) =0since (.9R, .9R) isoutside the circle of radius R.

d.

18.
a  PRyx(y|1) resultsfrom dividing each entry in x = 1 row of the joint probability table by
px(1) = .34
.08
P,(0]1) == =.2353
34
20

(L] =< = 5882

ylx

@211 =2 = 1765
34

ylx

b. Pyx(x|2) isrequested; to obtain this divide each entry inthey = 2 row by
px(2) = .50:

y|0 1 2

Rx(Y[2) ‘ 12 28 60

c. PYE£1|x=2=RxOR) +P,x(12) =.12+.28= 40

d. Pxy(x[2) resultsfrom dividing each entry in they = 2 column by py(2) = .38:

X | 0 1 2

Pyy(X2) ‘ 0526 1579 7895
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20.

21.
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f(xy) _ KOC+y?)

; _ 20£y£30
w0 = T 100 +.05 ’
KO + y?) 3 9
fo(X|y)=———22L  20£X£30 & = -
X|Y( | y) 1oky2 +.05 X g 380,000ﬂ

30
RY? 5|x=2)= Q fvx (y]22)dy
2 2
- 2 1Y) o - 763
10k(22)2 +.05

R(Y 25)= ) Ty (y)dy = () (10ky? +.05)dy = .75
¥ 2 k(22 +y?)
E(Y |X=22)= xf 22)dy = x d
(Y] ) Q, y Y|X(y| )dy Qy 10k(22)2 + 05
=25.372912

e xezy = y2 KU +YY) 4 - e 028640
@7 “ok(22)? +.05 |

V(Y|X =22) = E(Y? | X=22) — [E(Y | X=22)]° = 8.243976

F (X0 %5, %3) -
frm, (X5 | %, %,) = ﬁ where f, . (X;,X,) = themarginal joint pdf
X1,Xp VL1 A2
¥

of (X1, X2) = (Q, f (X, %, X3 )oX,

(%%, %)
f, (%)

£ 00) = Q, Q, T 0% X X)X,y

fxz,x3|xl (X2,X3 | Xl) = where

For every x and y, fyx(yIx) = fy(y), since then f(x,y) = fyx(ylx) *fx(¥) =fy(y) *fx(x), as
required.
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Section 5.2

22.

23.

24,

25.

26.

a EX+Y)=d & (x+Yy)p(xy) = (0+0)(.02)
Xy

+(0+5)(.06) + ...+ (10 +15)(.01) =14.10

b. Emax(XY)]=Q & max(x+Yy)xp(x,y)
Xy

= (0)(.02) + (5)(.06) +...+ (15)(.02) =9.60

4 3
EXi-X)=aA a (X1 - X2)><p(x1,x2):

%1=0%,=0
(0—0)(.08) + (0— 1)(.07) + ... + (4—3)(.06) = .15
(which also equals E(X1) — E(X5) = 1.70— 1.55)

Let h(X,Y) = # of individuals who handle the message.

y

h(x,y) 1 2 3 4 5 6
1 2 3 4 3 2
2 2 2 3 4 3
X 3 3 2 2 3 4
4 4 3 2 2 3
5 3 4 3 2 2

6 2 3 4 3 2

Sincep(xy) = & for each possible (x), EINX,Y)] = § & h(x,y) x5 =& = 2.80
Xy

E(XY) = E(X) xE(Y) =L xL =L?

Revenue = 3X + 10Y, s0 E (revenue) = E (3X + 10Y)

5 2
= & & (3x+10y) xp(X, y) = 0xp(0,0) +...+ 35xp(5,2) =15.4

x=0 y=0

184



27.

28.

29.

30.

31
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X~ Y| 6x%ydxdy = Zéé(x - y)»6x?ydydx

o
O

E[h(X,Y)] =

5
12 3y - X2y )dydx = 128 —dx = =
[y - x?y?)ay 0

O
O/~

E(XY) = a a xyxp(x y)=a & xyxp,(¥ xp, (y) = a Xp, (X) >a yp, ()

y Xy
=E(X) ><E(Y) (replace S with - ¢ in the continuous case)

2 2 2 \1 2
Cov(X,Y) = - = and M =m, :E' E(X%) = QX xf_ (x)dx

! 12 1 1 4 1
=12x3(1- deX =_=—,SOVarX:—-—:—
@ ( ) 60 5 % 5 25 25
Similarly, Var(Y)—i sOr,y = s —-@2-667

JENE T

a  E(X)=555E(Y) =855 EXY)=(0)(.02) + (0)(.06) + ... + (150)(.01) = 44.25, 50
Cov(X,Y) = 44.25 — (5.55)(8.55) = -3.20

b. s%=1245s)=19.15s0r ,, = - 3.20 - 207

J(12.45)(19.15)

a EX= X, ()dx= ) x[10Kx? + 05|dx = 25.329 = E(Y)

E(XY) = é& Xy XK (x* + y?)dxdy = 641.447
b Cov(X,Y) =641.447 - (25.329) = - .111

b, EX?)= (‘Sj’xz[lonz + 05|k = 649.8246 = E(Y?),

0 Var (X) = Var(Y) = 649.8246 — (25.329)° = 8.2664
-.111

) |/ (8.2664)(8.2664)
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35.

36.
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Thereisadifficulty here. Existenceof r requiresthat both X and Y have finite means and

variances. Y et since the marginal pdf of Y is#2 fory3 0,
( | (L-y)
¥ oy Y(1l+y-1 ¥ 1 ¥y 1
E -nN—2 = = dv - dy, and th
) Q(1+ y)zdy Q (1+y)2 Q(1+y) / Q(1+ y)2 Y andine

firstintegral isnot finite. Thusr itself isundefined.

Since E(XY) = E(X) XE(Y), Cov(X,Y) = E(XY) — E(X) xE(Y) = E(X) xE(Y) - E(X) xE(Y) =

_ Cov(X,Y)
0, and since Corr(X,Y) = S— ,then Corr(X,Y) =0

Xy

a. Inthediscrete case, Var[h(X,Y)] = E{[h(X,Y) — E(h(X,Y))]*} =
a ah(xy)- E(h(X,Y)I*p(x y) =@ a [h(xy)* p(x, y)] - [E(h(X,Y))]*
Xy Xy

Y . o] ] . .
with g replacing @ @ in the continuous case.

b. E[h(X,Y)] = E[max(X,Y)] = 9.60, and E[h?(X,Y)] = E[(max(X,Y))?] = (0)*(.02)
+(5)2(.06) + ...+ (15)%(.01) = 105.5, s0 Var[max(X,Y)] = 1055 — (9.60)* = 13.34

a  Cov(aX +b,cY +d)=E[(aX +b)(cY +d)] — E(aX + b) xE(cY +d)
= E[acXY +adX +bcY + bd] — (aE(X) + b)(cE(Y) + d)
= acE(XY) — acE(X)E(Y) = acCov(X,Y)

b. Corr(@X +b,cY +d)=
Cov(aX +b,cY +d) _ acCov(X,Y)
JVar(aX +b)Var(cY +d) |a|xc|,Var(X)Nar(Y)
=Corr(X,Y) when aand c have the same signs.

¢c. Whenaand cdiffer in sign, Corr(aX + b, cY + d) =-Corr(X,Y).

Cov(X,Y) = Cov(X, aX+h) = E[XxaX+b)] — E(X) E(aX+b) = aVar(X),
aVar (X) _ aVar (X)

Nar (X)¥ar(Y) JVar (X)xa?Var (X)

so Corr(X,Y) =

=1lifa>0,and-1lifa<0
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Section 5.3
37.
Px) | 20 50
POo) | *Ix 25 40
20 25 04 10 06
50 40 10 25 15
30 65 06 15 09
a
X ‘ 25 25 40 45 525 65
p(X) ‘ 04 20 25 12 30 09

38.

Chapter 5. Joint Probability Digtributions and Random Samples

=

o

s? ‘ 0 1125 3125 800

P(s%) ‘ 38 20 30 12

P(To) | 04 20 37 30 09
m, = E(T,) =2.2=2xm

s+ =E(Ty)- E(T,)* =5.82- (22)* =.98=2>°
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39.
X 0 1 2 3 4 5 6 7 8 9 10
x/n 0 1 2 3 4 5 6 7 8 9 10
p(x/ny | OO 000 000 001 .005 .027 .08 .201 .302 .269 .107
X isabinomia random variablewithp =.8.
40.

a. Possiblevaluesof M are: 0,5, 10. M =0when all 3 envelopes contain O money, hence
p(M =0) = (.5)*=.125. M = 10 when thereisasingle envelope with $10, hence p(M =
10) = 1— p(no envelopes with $10) = 1 — (.8)° = .488.
p(M =5) = 1—[.125 + .488] = .387.

M | 0 5 10

p(M) | 125 387 488

An aternative solution would beto list all 27 possible combinations using atree diagram
and computing probabilities directly from the tree.

b. Thestatistic of interest is M, the maximum of X, X, or X3, sothat M =0, 5, or 10. The
population distribution isasfollows:

X ‘ 0 5 10

pX) ‘ 1/2 3/10 1/5

Write a computer program to generate the digits 0 — 9 fromauniform distribution.
Assign avalue of Oto thedigits0— 4, avalue of 5to digits5— 7, and avalue of 10 to
digits8 and 9. Generate samples of increasing sizes, keeping the number of replications
constant and compute M from each sample. Asn, the sasmple size, increases, p(M = 0)
goesto zero, p(M = 10) goesto one. Furthermore, p(M = 5) goesto zero, but at aslower
rate than p(M = 0).
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41.
Outcome 11 1,2 13 14 21 22 23 24
Probability 16 12 08 04 12 09 06 .03
X 1 15 2 25 15 2 25 3
r 0 1 2 3 1 0 1 2
Outcome 31 32 33 34 41 42 43 44
Probability = 08 06 .04 02 04 03 02 .01
X 2 25 3 35 25 3 35 4
r 2 1 0 1 3 2 1 2
a.
i‘ 1 15 2 25 3 35 4
p(x) ‘ 6 24 25 20 10 04 01
b. P(XE25)=8
C.
r ‘ 0 1 2 3
p(r) ‘ 30 40 22 .08
d. P(X£15=P1111)+PR1LY+... +P1112) +P1122) +... +P2211) +
PGLLL) +...+P(1,1,1,3)
= (4)* + 4(4)°(.3) + 6(4)(.3)% + 4(4)*(.2)* = .2400
42.
a
X 2775 280 297 2995 3165 319 336
W+ 5 5 5 % b b
b.
X | o 3165 3L9
I

c. dlthreevauesarethesame: 30.4333
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44,

45,
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The statistic of interest isthe fourth spread, or the difference between the medians of the
upper and lower halves of the data. The population distribution isuniform with A =8and B
=10. Useacomputer to generate samples of sizesn =5, 10, 20, and 30 from auniform
distribution with A = 8 and B = 10. Keep the number of replications the same (say 500, for
example). For each sample, compute the upper and lower fourth, then compute the
difference. Plot the sampling distributions on separate histograms for n =5, 10, 20, and 30.

Use a computer to generate samples of sizesn =5, 10, 20, and 30 from aWeibull distribution
with parameters as given, keeping the number of replications the same, asin problem 43
above. For each sample, calculate the mean. Below is ahistogram, and anormal probability
plot for the sampling distribution of X for n =5, both generated by Minitab. Thissampling
distribution appearsto be normal, so since larger sasmple sizes will produce distributions that
are closer to normal, the others will also appear normal.

Using Minitab to generate the necessary sampling distribution, we can see that as nincreases,
the distribution slowly moves toward normality. However, even the sampling distribution for
n=50isnot yet approximately normal.

n=10
Normal Probabiiity Plot
90 —f
80 5 .999
70 — .99 =
60 =1 .95
>
2 50 £ 80 —
2 w0 5
.50 4
§ 30 - -8
& .20 4
20 o 0
10 - .05
.01 4
00— S
T T T T T T T T T T .001 o+
o 10 20 30 QO 50 60 n 80 90
5 15 25 35 45 55 65 75 85
n=10
Anderson-Daring Normality Test
ASquared: 7406
P-\alue: 0.000
n=>50
Normal Probability Plot
70 999
99 o
60 — 95 -
2
50 — % 80 -
I o 504
S 40 — <]
g & 20+
o 30 05
w -
20 - oi
001 + 2
10 —
0 — = — =W} 20 30 40 50 60

15 25 35 45 55 65 Aderson-Darling Normality Test
ASquared: 428

P-valie: 0.000
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Section 5.4

46.

47.

48.

m= 12 cm s=.04cm

a n=16 E(X) =m=12cm s_:S—X:%:.omm

" dn
— .04
b. n=64 E(X) =m=12cm syz—X=?=_005cm

c. Xismore likely to be within .01 cm of the mean (12 cm) with the second, larger,
sample. Thisisdueto the decreased variability of X with alarger sample size.

m=12cm s=.04cm
a n=16 P(11.99£ X £1201)= ng 7 EMQ
e .01 01l g
=P(-1£Z£1)
=F(D)-F()
= 8413 - .1587
= 6826
b. n=25 R(X >1201)= PEZ S1201- 126 o010
e 04/5 g
=1-F(125)
=1-.8%44
=.1056
S 1
a =m=50,s,=-X=—-_=10
X Jn 4100
P(49.75£ X £50.25)= Pgé—g'?S_ 0 £ZE 50.25- %09
e .10 0 g
=P(-25£Z £25) = 9876
b, P(4975E X £5025)» Péé975- 49.8 7€ 50.25 - 49.89
e .10 .10 17}

=P(-5£Z £45)= 6915
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49.

50.

51.

52.
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a 11PM.-6:50P.M. =250 minutes. With Tg=Xj +... + X40 =total grading time,
m, =nm=(40)(6) =240 ands ; =s Jn=37.95 s P( To £ 250) »

PaJZ g 20- 2406_ (7 ¢ 26)= 6026

37.95 g
260- 240
b. P(T, >260)= P& > 2" 9 p(z > 53) = 2081
e 3795 g
m= 10,000 psi s =500 psi

a n=40
a9,900- 10,000 c7¢ 10,200- 10,0000

= e
é 500/ /40 500/4/40 g

=P(-126£Z £253)
=F(253)- F(-1.26)
=.9943 - .1038
=.8905
b. According to the Rule of Thumb given in Section 5.4, n should be greater than 30in
order to apply the C.L.T., thus using the same procedure for n = 15 aswas used for n =
40 would not be appropriate.

P(9,900£ X £10,200)»

X ~N(10,4). Forday 1,n=5

A X £11=PE £ 117290 b7 £119) = 8686
% 2//5

Forday 2,n=6

AX £1=P% £ 217190 b7 £129) = gass
g 2//6 g

For both days,
P( X £ 11)=(.8686)(.8888) =.7720

X ~N(10), n=4

m. =nm= (4 (10) =40 ands ;, =s Vn =(2)) =2,
We desire the 95! percentile: 40 + (1.645)(2) = 43.29
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=50, s=12
n=9
X sy=p& s 2100 b5 55 21. 9938 = 0062
g 1.2/-/9 %
n=40
X sn=P& s 2100 p7s557),0
E 1.2/-/40 5
S .85
=m=265,s; =—*%=—=.17
my 5
3.00- 2.65¢

R(X £300=PEZ £ =29 p(Z £ 2.06) =.9803
e A7 g

PR65£ X £300== P(X £ 3.00)- P(X £ 2.65) =.4803

3.00- 2.650_

85/\n 5
whichn=32.02. Thusn= 33 will suffice.

P(X £300)= P? £ .99 implies that o 35 2.33, from

5//n

m=np=20 s =./npq =3.464

a

P(25£ X ) » P?M
@ 3.464

£792= P(L.30£ Z) =.0968
a
45- 20 255- 20
M15£ X £25)»P€é' £Z£ 9
& 3.464 3.464 g
= P(- 1L.59£ Z £1.59) = .8882

With'Y =# of tickets, Y has approximately anormal distribution with m =1 =50,
T = 7071 oramev 1y RS0 T0S-50
e 7.071 7071 g

£27 £290)=.9838

Here M =250,s # = 250,s =15.811, soP(225£Y £275) »

P?M £ZE MQ =P(-161£Z £ 1.61) = .8926
e 15811 15811 g
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57. E(X) =100, Var(X) =200, S , =14.14,s0P(X £ 125) » pg:z EMQ
e 1414 g

= P(Z £1.77) = 9616

Section 5.5

58.
a  E(27Xy + 125X, +512X5 ) = 27 E(X4) + 125 E(X,) + 512 E(X3)
= 27(200) + 125(250) + 512(100) = 87,850
V(27X + 125X, + 512X3) = 272 V(X1) + 1257 V(X,) + 512% V(X3)
=277 (10)* + 1257 (12)* + 512% (8)* = 19,100,116

b. Theexpected valueisstill correct, but the variance is not because the covariances now
also contribute to the variance.

59.
a E(X1+X2+X3):180 V(X1+X2+X3):45 Sx+xz+x3 =6.708
200 - 180¢
P(x1+x2+x3£200)—PaJZ £ 20 200 b7 £ 2.98) =.9986
6.708 g
P50 £ X1 + Xs +x3£200) = P(- 4.47 £ Z £ 2.98) » .9986
b. M =m=60,s, _S. 5505
Jno /3
55- 60

P(X 3 55) = Pa% 3

2=p(z 3 - 2.236) =.9875
2.236 g

P(S8£ X £ 62) =P(- .89£ Z £.89) = .6266

C. E( X1 -.5X5-5X3 ) =0;

V(X1 -5Xy-5X3)=S [ +.255 2 + .25 2 = 22.5, d=4.7434
10- 0 £z 5-0 9
4.7434 4.7434
= P(- 211£ Z £1.05) = .8531- 0174= 8357

P(-10£ X - 5X5 -5X3 £5) = Pg
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61.

62.

63.
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d. E(X1+X2+X3):150, V(X1+X2+X3):36,S :6

160- 150
POy + X, + X3 £.200) = P37 ETQ: P(Z £1.67) =.9525
e 4]

Wewant P( X1 + X5, 3 2X3), or written another way, P( X1 + X5 - 2X33 0)
E(X1+X2-2X3):40+50—2(60):'30,
V(X; +X2-2X3)=S 7 +S . +4s 2 = 78,36, 50=8832, 50
0- (-30)¢
P(X1 + X, - 2Xs? 0)= PEZ 2 0-(396_ P(Z 3 3.40) =.0003
=) 8832 g

Y isnormally distributed with m, = %(ml +m,) 1(rr13 +m,+m)=-1,and

3
1 1 1 1 1
s 2 :ZS 2 +ZS 2 +§s z +§sj +§552 =3.167,s, =1.7795.

Thus, P(O £ Y) = P(;:;é) )
e1.7795

£72=P(56£ Z) =.2877 and
9

2 .
P-1£Y£1)=PROLZE Q- pP(0£Z £1.12) = .3686
& 1.779

a.  Themargina pmf’'sof X and Y are given in the solution to Exercise 7, from which E(X)

=28 E(Y)=.7,V(X) =166, V(Y) =.61. ThusE(X+Y)=E(X) + E(Y) =35, V(X+Y)
=V(X) +V(Y) = 2.27, and the standard deviation of X +Y is1.51

b. E(@BX+10Y) =3E(X) + 10E(Y) = 15.4, V(3X+10Y) = 9V(X) + 100V(Y) = 75.94, and the
standard deviation of revenueis8.71

E( Xy + Xz + X3 ) = E(X1) + E(Xz ) + E(X3) = 15+ 30+ 20 = 65 min,,
V(X1 +Xo +Xg) =12+ 2 +15° =758, , . =+/7.25=2.6926
60- 65¢_

2= P(Z £ - 1.86) =.0314
2.6926 g

Thus, P(Xl +Xo+ X3 £ 60) = Pa £
e

a  E(X:)=170,E(X;) = 155, EXuX2) = @ @ %X, P(X,,X,) = 3.33, 50 Cov(X.X2) =

X X

E(X]_Xz) - E(Xl) E(Xz) =3.33-2635=.695

b. V(X1 +X2)=V(Xy1) + V(Xp) +2 Cov(X1,X7)
= 1,50 + 1.0875 + 2(.695) = 4.0675
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65.

66.

Chapter 5. Joint Probability Digtributions and Random Samples

Let Xy, ..., X5 denote morning times and X, ..., X109 denote evening times.
a E(Xl + ...+ XlO) = E(Xl) +...+ E(XlO) =5 E(Xl) +5 E(XG)
=5(4) +5(5) =45

b. Var(Xl + ...+ XlO) —Va'(Xl) +...+ Va'(xlo) = SVH(X]_) + 5V3'(X6)
é64 . 100 100y _ 820

=55— =68.33
82 128 12
C. E(Xl—XG):E(Xl)-E(XG):4—5 -1
64 100 164
Va(X;—Xg) =Va(Xy) + Va(Xg) = — +— =——=13.67
a(X1—Xe) =Var(Xy) +Va(Xe) = 2 1 12

d. EXi+...+Xs)=(Xeg+... +X10)] =5(4) - 5(5) =-5
Var[(Xy +... +Xs5) = (Xg + ... + X10)]
=Va(Xy +... +Xg) + Var(Xg + ... + X10)] =68.33

m=5.00,s = .2

2 E(X-V)=0 V(X-V)=3-+5" = 0032, S 5 - =.0566
25 25

b P(-.1£X-Y£.1)» P(- L77£Z £1.77)=.9232 (by the CLT)

2 2
b V(X-V)=>_+3 = 0022222, s, . =.0471
36 36

p P(-.1£ X- Y£.1)» P(- 212 £ Z £ 2.12) =.9660

a  With M =5X; +10X,, E(M) = 5(2) + 10(4) = 50,
Var(M) =52 (.5)% + 10 (1)? = 106.25, s\ = 10.308.

255- 50
b. 75<M)= P
A )= Pe 0308

< 7%= p(2.43< 7) = .0075
(%]

c. M=AX;+AX,withthe A,'sand X,’s al independent, so
E(M) = E(A1X1) + E(A2X2) = E(A1)E(X1) + E(A2)E(X2) =50
d. Va(M)=EM?) —[EM)]>. Recall thatforanyr.v.Y,
E(Y?) = Var(Y) + [E(V)2. Thus, EM?) = E(AZX2 +2A X, A, X, + AZX?)
= E(A?)E(x2)+ 2E(A)E(X, )E(A, )E(X,) + E(A2 JE(X2)
(by independence)

=(.25+ 25)(.25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so Var(M) =
2611.5625 — (50)% = 111.5625
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e. E(M)=50still, but now
Var(M) = a’Var(X,) + 2aa,Cov(X,, X,) +a:Var(X,)
= 6.25 + 2(5)(10)(-.25) + 100=81.25

Letting X1, X2, and X3 denote the lengths of the three pieces, the total length is

X1 + X5 - X3 Thishasanormal distribution with mean value 20 + 15— 1 = 34, variance
.25+.16+.01 = .42, and standard deviation .6481. Standardizing gives

P(345 £X1+X5-X3£35)=P(77£Z £154)=.1588

Let X, and X, denote the (constant) speeds of the two planes.

a. After two hours, the planes have traveled 2X; km. and 2X, km., respectively, so the
second will not have caught the first if 2X; + 10> 2X,,i.e if X, —X; <5. X, — X1 hasa
mean 500 — 520 = -20, variance 100 + 100 = 200, and standard deviation 14.14. Thus,

P(X, - X, <5) = P&Z < 5 C200_p7 <177) = o616,
e 1414 ¢

b. After two hours, #1 will be 10 + 2X; km from where #2 started, whereas #2 will be 2X
from whereit started. Thus the separation distance will bea most 10if |2X; — 10— 2X,|
£10,i.e.—10£ 2X, — 10— 2X; £ 10,
i.e.0£ X, — X1 £ 10. The corresponding probability is
PO£ X, — X1 £10)=P(141£ Z £ 2.12) = .9830 - .9207 = .0623.

a  E(Xy+ X+ X3) =800+ 1000 + 600 = 2400.

b. Assuming independence of X1, X2, X3 Var(Xy + Xz + X3)
=(16)* + (25)> + (18)> = 12.05

c. E(Xy+X;+X3)= 2400 asbefore, but now Var(X; + X5 + X3)
= Va’(Xl) + VH(Xz) + Va’(X3) + 2COV(X1,X2) + 2COV(X1, X3) + 2COV(X2, X3) = 1745,
withsd =41.77

a E(Y,)=.5 s E(\N):énixE(Yi):-5én. i :w
o, Var(Y) = .25 soVar (W) = éﬂ i2>«/ar(Yi)=.25§n. 2 n(n+1;E12n+])
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a M =aX,+a,X, +W{xix=aX, +2,X, + W, s0
E(M) = (5)(2) + (10)(4) + (72)(1.5) = 158m
s 2 =(5)*(:5) + (10)*(1)* +(72)*(25)* = 430.25, s ,, =20.74

200- 158¢
b. P(M £ 200)= P‘?fi g R0, P(Z £ 2.03) =.9788
e 2074 g

Thetotal elapsed time between leaving and returning is T, = X1 + X, + X3 + X4, with
E(T,) =40, s TZO =40, s T = 5.477 . T, isnormally distributed, and the desired value t

isthe 99" percentile of the lapsed time distribution added to 10 A.M.: 10:00 +
[40+(5.477)(2.33)] = 10:52.76

a. Both approximately normal by the C.L.T.

b. Thedifferenceof twor.v.’sisjust aspecial linear combination, and alinear combination
of normal r.v’s hasanormal distribution, so X-Y has approximately anormal

8  6°

distribution with My - =5 ands 2 ; = —+— =2.629,s - ; =1.621
rT‘)?—Y X-Y 40 35 X-Y
- 1- 5 1- 5 &
¢ Pl1EX-YEURPE 2z 20
€l.6213 1.6213 g
= P(- 3.70£ Z £ - 2.47) » .0068
— = 10- 59 : A
d. P(X-V310)8P%3 9= p(z 2 3.08) =.0010. This probability is
e 1.6213g
quite small, so such an occurrenceisunlikely if M - M, =5, and we would thus doubt

thisclaim.

X is approximately normal with M) =(50)(.7) =35 and s/ = (50)(.7)(.3) =10.5, as
isYwith m, =30 ands > =12. Thusm,_, =5 ands ;_, =225, so

10 0 4
p-5E£X-YES)»PE—£72e—2=P(-211£Z £0) = 4826
&4.74 4745
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Supplementary Exercises

75.

76.

77.

a.  px(x) isobtained by adding joint probabilities across the row labeled x, resulting in px(X)
=.2,.5, 3for x =12, 15, 20 respectively. Similarly, from column sums py(y) = .1, .35,
B5fory =12, 15, 20 respectively.

b. P(X£15andY £ 15) =p(12,12) + p(12,15) + p(15,12) + p(15,15) = .25

C. pPx(12) ¥py(12) =(.2)(.1)* .05=p(12,12),s0 X and Y are not independent. (Almost any
other (x,y) pair yields the same conclusion).

E(X+Y) =8 a (x+ y)p(x,y) = 33.35 (or = E(X) + E(Y) = 33.35)

o

®

E(X-Y)=a & |x+yp(xy) =385

Theroll-up procedureis not valid for the 750 percentileunless S ;| = Oors 5 = 0 or both
S, andS , =0, asdescribed below.
Sum of percentiles: m+(2)s,+m+(Z)s,=m+m +(Z)(s,+s,)

, _ 2 2
Percentile of sums: m +m, +(2)./s cts’

These are equal when Z = 0 (i.e. for the median) or in the unusual case when
S,+s, :4/sf+s f , which happenswhenS ; =0 or S, =0 or both S ; and
s, =0.

x+y=30

Xx+y=20

>

20 30- x 30 30-x

[
a 1=, 0, F(xYdxdy=¢) ), keydydx+ 3 Q) keydycx
_ 81250, _ 3

3 81250

30- x

b @ loydy = k(250x- 10x) O£ x£ 20
b F ()T 0,2
§Q loydy=k(450x- 30x*+1x% 20£Xx£30

and by symmetry fy(y) is obtained by substituting y for x in fx(x). Sincefx(25) > 0, and
fy(25) >0, but f(25, 25) = 0, fx(X) Xfy (y) * f(x,y) foral x,y so X andY arenot
independent.
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79.

Chapter 5. Joint Probability Digtributions and Random Samples

20 25 x 25 25 x
c. P(X+YE£25= @ Q) kxydydx+ QQ kxydydx
__ 3 230625 _ 355
8,250 24

d E(X+Y)= E(X)+E(Y)= 2{@2°xxk(250x- 102 Jox

+ X K(450x - 30x* +1 x3)dx} = 2k(351,666.67) = 25.969
e E(XY) =, xyxf(xy)ixdy =y § k¢ y’dydx

3030x 5 _ k33,250,000 _
+Q,0 kx?y2dydx = ng =136.4103, so

Cov(X,Y) = 136.4103 — (12.9845) = -32.19, and E(X?) = E(Y?) = 204.6154, s0

S =s7=2046154- (12.9845)" = 36.0182and I = - 3219 _
36.0182
f.  Va (X+Y)=Va(X)+ Var(Y) + 2Cov(X,Y) = 7.66
. ay-100¢'
A (y) =P(max(Xy, ..., Xp) £Y) =P(X1£Y, ..., Xs £Y) = [PX1 £Y)]" = ¢ + for
e 100 g
100 £ y £ 200.
n n-
Thusfy(y) = 100" (y- 100) ' for 100£ y £ 200.
\200 n n-1 n ‘100 n-1
E(Y) = x——(y- 100 =— u+100)u™-du
(V)= Q, ¥ (V- 200) o @ (u+100)
:100+L(§°°u“du - 100+100—" = 2" L 900
100" n+l n+1

E(X +Y + Z) =500+ 900 + 2000 = 3400
502 1007 . 1807
+ +
365 365 365
P(X +Y +Z £3500) = P(Z £9.0) » 1

Var(X+Y +2Z)= =123.014, and the std dev = 11.09.
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80.

81.

82.

83.

84.

85.

86.

Chapter 5. Joint Probability Digtributions and Random Samples

a LetXjy,..., X1, denote the weights for the business-class passengersand Yy, ..., Yso
denote the tourist-classweights. Then T = total weight
=X1+ ..+ X +HY+ .+ Y50=X+Y
E(X) = 12E(X ;) = 12(30) = 360; V(X) = 12V(X4) = 12(36) = 432.
E(Y) = 50E(Y;) = 50(40) = 2000; V(Y) = 50V (Y1) = 50(100) = 5000.
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360
And V(T) =V(X) + V(Y) =432 + 5000 = 5432, std dev = 73.7021

2 2
P% c 500 - 3600

= P(z £1.90) =.9713
73.7021 g

b. P(T £ 2500) =

a.  E(N) xm=(10)(40) = 400 minutes

b. Weexpect 20 componentsto comein for repair during a4 hour period,
so E(N) xm=(20)(35) =70

X ~Bin (200, .45) and Y ~ Bin (300, .6). Because bothn's arelarge, both X and Y are
approximately normal, so X + Y is approximately normal with mean (200)(.45) + (300)(.6) =
270, variance 200(.45)(.55) + 300(.6)(.4) = 121.40, and standard deviation 11.02. Thus, P(X

249.5- 27
Pa% 2 2495- 2100 _ 175 1 gg) = o686
11.02 g

+Y 3 250) =

02 i

01/4/ng

Pl- 2/ £2 £ .2/n) but P(- 1.96 £7 £l.96) =95 50
2:/n=196p n=97. TheCLT.

095= P(m- .02£ X £ m+. 02)&Pg

| have 192 oz. The amount which | would consumeif therewereno limitisTyo =X + ...+
X14 Where each X, isnormally distributed withm= 13 ands = 2. Thus T, is normal with

m, = 182 and s T, = 7.483, 50 P(T, < 192) = P(Z < 1.34) =.9099.

The expected value and standard deviation of volume are 87,850 and 4370.37, respectively, so

100,000 - 87,850¢
PB% £ O- p(z £2.78) = .9973

P(volume£ 100,000) = 4370.37
%)

The student will not belateif X1 + X3 £ X5, i.e.if X1 —X,+ X3 £0. Thislinear combination

has mean —2, variance 4.25, and standard deviation 2.06, so

- - 2 I
0-(2¢_ P(Z £ .97) = .8340
(%]

P(X,- X, +X;£0)=PEZ £
e
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88.

89.

Chapter 5. Joint Probability Digtributions and Random Samples

a Var(aX+Y)=a’s}+2aCov(X,Y)+s =a’s}+2as,S,r +S ..

S
Substituting @ =— yieldsS { +25 Jr +s =25$(1- r)3 O,sor 3 -1
S
X

b. Sameargumentasina

c. Suppose I =1. Then Var(aX - Y)= 2s 3(1- r )= 0, which implies that
aX - Y =K (aconstant), so aX - Y =aX - k,whichisof theform aX +b.

1
~

1
E(X+Y-1t)?= QQ(X+ y - 1)% xf (X, y)dxdy. Tofind the minimizing valueof t,
take the derivative with respect to t and equateit to O:

0=Q20x+y- (- D (x y) =0P JQHf (x, y)dxdy =t

= éé(x+ y) Xf (X, y)dxdy = E(X +Y), so the best prediction isthe individual’s
expected score ( = 1.167).

a  WithY =X+ Xy,

1 Mmoo XX

FY(Y):Qy%CS_Xl 5 L X—0 X2 X2 e 2 dxydx,.
19 Egh 12) 29%Gh, 12) b

But the inner integral can be shown to be equal to

1 y[(n1+n2)/2]-1
20m)2Q{(n, +n,)/2)

-y /2

e , from which the result follows.

b. Bya Z7 +Z7 ischi-squared withn =2, s0 (le + ZZZ)+ Z?Z ischi-squared with
n =3, etc,until Z>+ ...+ Z> 9schi-squared withn =n

X -m

S
ischi-squared withn =nN.

ischi-squared withn =1, so the sum

oo S

_ ex,-m
is standard normal, so g—
S
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91.

92.

Chapter 5. Joint Probability Digtributions and Random Samples

Cov(X,Y +Z) =E[X(Y + Z)] — E(X) xE(Y +2Z)
= E(XY) + E(XZ) — E(X) xE(Y) — E(X) xE(2)
= E(XY) — E(X) xE(Y) + E(XZ) — E(X) XE(Z)
= Cov(X,Y) + Cov(X,2).

Cov(X1+ Xz, Y1+ Y2)=Cov(Xy, Yy) + Cov(Xy,Y2) + Cov(Xz, Y1) + Cov(X2,Y>)
(apply atwice) = 16.

V(X)) =VW +E) =s +s¢ =V(W +E,) =V(X,) and
Cov(X,, X,) =Cov(W + E,W +E,) = Cov(W,W) + Cov(W,E,) +
Cov(E,,W) +Cov(E,, E,) = Cov(W,W) =V(W) =s 2.

s s
Thus, I = W =— w >
JSC+six[sZ+s? Sy+sg
r= 1 =.9999
1+.0001

Cov(X,Y)  =Cov(A+D, B+E)
=Cov(A,B) + Cov(D,B) + Cov(A,E) + Cov(D,E)=Cov(A,B). Thus

_ Cov(A B)
o= Js 2+s? x\/s 2 +g2
A D B E

_ Cov(AB) s, S

B
prd
SiSs 5itsi Asits:

Thefirst factor in thisexpressionis Corr(A,B), and (by the result of exercise 70a) the

second and third factors are the square roots of Corr(X3, X3) and Corr(Yy, Y2),

respectively. Clearly, measurement error reduces the correlation, since both square-root

factors are between O and 1.

4/.8100 %/.9025 = .855. Thisisdisturbing, because measurement error substantially

reduces the correlation.
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94,

Chapter 5. Joint Probability Digtributions and Random Samples

E(Y) &h(m,m,,m, m) =120[% + & +-1]| = 26
The partial derivatives of h(m, m,,m,, m,) with respect to xy, X, Xs, and x, are - X—‘;,
X

X, X, 1 1 1 _ _

— T o and — +—+ — respectively. Substituting x; =10, % = 15, x3 = 20, and
X2 XS Xl X2 X3

X4 = 120 gives —1.2, - 5333, -.3000, and .2167, respectively, o V(Y) = (1)(-1.2)* + (1)(-

5333)% + (1.5)(-.3000)° + (4.0)(.2167)° = 2.6783, and the approximate sd of y is 1.64.

2X, 2%, 2X, . o

3 3 3 »andOrespectively. Substitution gives
X X X
E(Y) =26 +.1200 + .0356 + .0338 = 26.1894.

The four second order partialsare
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CHAPTER 6

Section 6.1
1.
a  Weusethe sample mean, X to estimate the population mean 17 .
=x= % = 21980 _g 1457
n

b. We usethe samplemedian, X = 7.7 (the middle observation when arranged in
ascending order).

1860.94 - (21281
26

=1.660

c. Weusethe sample standard deviation, S= NS = \/

d. With“success’ = observation greater than 10, x = # of successes = 4, and

p=X=-4=1481

n 27

e. Weusethe sample (std dev)/(mean), or § == =.2039
X .

A . 10
a  WithX =#of T'sin the sample, the estimator is p =2;X =10, so p =5,=.50.

. 16
b. Here, X =#insamplewithout TI graphing calculator, and x = 16, s0 P = 2—0 =.80

205



Chapter 6: Point Estimation

We use the sample mean, X =1.3481

Because we assume normality, the mean = median, so we also use the sample mean
X =1.3481. We could also easily use the sample median.

We use the 90" percentile of the sample:

M+ (1.28)S = X +1.28s =1.3481 +(1.28)(.3385) =1.7814.

Since we can assume hormality,

15- X9 aaz 1.5-1.3481p

P(X <1.5)» PEZ < 0-pf7 « 2" —""-0-p(z < .45) = 6736
e ] e 3385 g
The estimated standard error of X = S -S- ﬁ =.0846
N T

2
N NG S S
b V(X-V)=V(X)+Vv(7)=s2+s2=21 432
n n
== s? s?
Sy =4VIX-Y)= ~1 +Z2: Theestimatewould be
n.
2 SZ ) 2 ) 2
S =J166 + 2104 _ a7
n n, 27 20
. 2100 a9
s, 21
d. V(X-Y)=V(X)+V(Y)=s 2 +s2 =166 +2.104° = 7.1824
N =5,000 T =1,761,300 _
y=3746 X=3406 d =340
g, = NX = (5,000)(340.6) = 1,703,000
q, =T - Nd =1,761,300- (5,000)(34.0) = 1,591,300
~ X 0 a340.60 _
ds =T —I= 1, Q
Vo 74.6ﬂ
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Chapter 6: Point Estimation

Let ¥, =In(Xx ) for1=1,.., 31 Itiseasly verified that the ssmple mean and sample sd
of the y;'S are Y = 5.102 and S, =.4961. Using the sample mean and sample sd
toestimate IT and S , respectively, gives M=5.102 and S =.4961 (whence

S? =5, =.2461).

é s?i . -
E(X)° expém+7Q. Itis natural to estimate E(X) by using M and S % in place of
e u
M andS 2in'[hisexpron:
- A 2461y
E(X) = exp §5.102 + a = exp(5.225) = 185.87
ax 1206
m=X= ax 1206 =120.6
n 10
" =10,000 i = 1,206,000

8 of 10 housesin the sample used at least 100 therms (the “ successes’), so
p=2==.80.
The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156, from

_ ) Lo - 118+122
which the two middle valuesare 118 and 122, so m= X = ———— =120.0

With g denoting the true proportion of defective components,
. _ (#defectivein.sample) _ 12
g=1 Ple) 12 150

sample.size 80

R 8¢
P(system works) = p?, so an estimate of this probability is p? Ig‘g—og =.723
eovg
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10.

11.

Chapter 6: Point Estimation

E(X) =m=E(X) =1 ,so X isanunbiased estimator for the Poisson parameter
| & % = (0)18) + (1)(37) +...+ (7)(1) = 317, sincen =150,

r=x=3Y o1
150

S5 =S— =£,sotheestimatedstandarderroris I— 211
n n n /150

2

2
E(X?) =Var (X) +[E(X)]? =5 5 M7, so the bias of the estimator )?ziss—;
n n

thus X ? tendsto overestimate M’ .

2
E(X? - ks?) = E(X?) - KE(S) = nf + S~ ks %, sowih k =+,
n n

E(X? - kS?) = .

&, X,0 1 1
Eet. Z2x= —g(x,)- —E(X,)== Sl =
n hi (X,) o (X2)= (nlpl) 2 = (0,p,) = p, -
6 1o @l ¢
Varg—t- 2+ —Var —+Var Zi= T Var(X,) +&—= Var(X,)
gm n, & 5 Eng Y TER S i
: ( 1|010ﬂ) 2 ( zpzqz) prlloﬂ Pl , and the standard error is the square

2 1 2
root of this quantity.

with p, 2%, G, =1- p.. P, 2%, g, =1- P,, theestimated standard error is
2
54 B
nl n2
. .. 127 176
- =—-—=.635- .880=-.245
(b~ P2)= S5 555
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12.

13.

14.

15.

&X 0 ~
a E(X?) =29 impliesthat Eg—i:q . Consider q =

Chapter 6: Point Estimation

(:635)(-365) , (880)(120) _ .
200

ol - 05 + (0, 9810 (1) (.- )

E 27D (g2
g- n+n,- 2 H n+n,-2 (8)+ n,+n,- 2 (%)
- (nl'l) s 2+ (nz'l) s2=g2
n+n,-2 n+n,- 2
E(X) = & x>&(1+ X)dX:X_ZJ,ﬁl -1 E(X):E
(0 RS ACaA®! 2 6 30 3q

-1

E(R) =30 G=3Xp E@)=EEX) =300 = =g
e3g

a. min(x) =202 and max(x) = 525, so the estimate of the number of planes manufactured is

max(%) - min(x) + 1=525— 202 + 1= 324,

b. Theestimatewill equal the true number of planes manufactured iff min(x) =a and

max(x) = b, i.e., iff the smallest serial number in the population and the largest serial
number in the population both appear in the sample. The estimator isnot unbiased. This
is because max(x;) never overestimatesb and will usually underestimate it ( unless

max(%) = b) , so that E[max(x)] <b. Similarly, Efmin(x)] > a ,s0 E[max(x) - min(x)] <
b-a+1; Theestimatewill usualy be smaller thanb - a + 1, and can never exceed it.

2 Q

Xi2
. Then

@) c &g X2 0 aE( ) an
§ 2n E 2n 2n
unbiased estimator for g .

_2nq _
=q, |mply|ngthatq isan
2n

1490.1058

b. Q@ X* =1490.1058, s0q = o = TAS05
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Chapter 6: Point Estimation

16.
a  EldX +(@1- d)¥]=dE(X) +(1- d)E(Y) =dm+(1- d)m=m
2 2 _d)2e 2
b Var[dX +(1- d)¥]=dVar (X)+ (- d)?Var(v) =35 4 4d-d)'s~
m n
2 ) 2
Setting the derivative with respect to d equal to 0 yields s +8(1 d)s =0,
m n
_ 4m
fromwhichd = .
A4m+n
17.
~_ ¢ r-1 ax+r-10
E =3 =xp" ¥1- X
» EP=a 7% )
g (x+r-2)_ ., L S aH+r-20 N
= A2 xp" Tt Aq1- = P (1
a o P {1- p) CYRNEE - p)
¥
= p& nb(x;r - 1, p) = p.
x=0
" 5-1 4
b. Forthegi X =5, = =—= 444
or the given sequence, X SOp 5+5_1 9
18.
Ex-m?/ ¢
1 g ASH 2 1
a f(xms?)= e 5 so f(Mms?) =———— and
J2ps J2ps
2 2
1 _2ps :Bxs—;sinceg>l Var (X) >Var (X).
AN[f(M]* 4n 2 n 2
_ 2
b, f(m) =< soVar(X)»P_ =247
p an n
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Chapter 6: Point Estimation

19.

a | =5p+.15p 2l =p+3,s0p=2 - 3and p=2 - .3=2€é—(9- 3

éng
the estimate is 2(?2—09- 3=.2.
€80 g
b. E(P)=E(2" - 3)=2E(")- 3=2 - 3= p, asdesred
c. Here | :7p+(3)(3)' SO p:E| -iandﬁzgﬁ_g- i
7 70 7éng 70

Section 6.2
20.

éam0 !
a.  Wewish to take the derivative of In ipx(l- p)n g

u
U, set it equal to zero and solve
SXX g 0

d é amo U X n-x
for p. —élng =+ xln(p)+(n- X)In(l- p)uZ—- —— setting thisequal to
dpg &Xgy g b 1-p
zero and solving for pyields P =—. Forn=20andx=3, p =— =.15
b. E(p)= EéﬁiQ:EE(X):l(np): p; thus P isan unbiased estimator of p.
eng n n

c. (1-.15)° =.4437
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22.

Chapter 6: Point Estimation

= b xc @+ 2 %ana E(X 2) =var (X) +[E(X)]? = b2CE +22 sothe
e ag e ag

" ~ _ ~ 1 .
moment estimators@ and b arethesolutionto X = b ><C;ﬁ_+ 79
e ag
1 ~ 26 ~ X .
—é Xi2 = bzcﬁ+79. Thus b = ————— ,soonce @ has been determined
n e ag + =9
¢ dg
1o V2 "2 2 106
G§+——|se\/aluatedand b then computed. Since X*=b%xG gf[+—A+,
e e ag
20
—aA oz " — , 0 this equation must be solved to obtain a .
X 5 10
G+
e ag
i+ 22 cf+ 29
1 &46,5000 e ag 1 @ ag
Froma, 2—0(; 2807 5 1.05 1o 1 G = T and
€ GZ$+79 ' +29
e ag e ag
1 - ~ X 280

fromthehint, —=.2P a =5. Then b =

a q12) dL2)

E(X) = éx(q +1)quX -+l =1- 1 , S0 the moment estimator Ci isthe
q+2 q+2

f (X0 %,30) = (@ +2)" (%, %,...X, )" , so the log likelihood is
nln(q +1)+qé In(>q). Takingdi and equating to O yields
q

q%lz-am(x.) q _-_OW 1. Taking |n(Xi)foreachgiven X;

yields ultimately q = 3.12.
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23.

24.

25.

26.

Chapter 6: Point Estimation

For a single sample from a Poisson distribution,

R | i ax
f (X X1 ) =2 et et
X! X! P ARS &
In[f (%, ;1 )] =-nl +& x In(1)- & In(x,1). Thus
dil[ln[f(xl,...,xn;l )]]=-n+ al A =0Pb |A=ﬂ=i. For our problem,
n

f(Xl,...,Xn,yl...yn;I ol 2) isaproduct of the x sample likelihood and they sample

likelihood, implying that | , =X,|", =y, and (by the invariance principle)
(Il' | 2):)_(' y.

& G- o)

We wish to take the derivative of In g ipr 1 with respect to p, set it equal
2

e en end

. X
d é ax+r-16 u r X

to zero, and solvefor p: — @n =+rin( p)+xIn(1- pg=—- — .
BEE x g a P 1-p

~ r
Setting this equal to zero and solving for pyields p = ——. Thisisthe number of
r+x

successes over the total number of trials, which is the same estimator for the binomial in

~ r
exercise 6.20. The unbiased estimator from exercise 6.17is P = —1 which is not the
r+x-

same as the maximum likelihood estimator.

a M=X=3844s>=39516,s0 lé (x - X =52 :%(395.16): 355.64
n

and S =+/355.64 =18.86 (thisisnot s).

b. The95" percentileis M +1.6455 , sothemleof thisis (by the invariance principle)
n+1.6455 =415.42.

Themleof P(X £ 400) is (by the invariance principle)
00- Mg 00- 384.44
p@O-Mo_ & 2= F(80)=.7881
e s ] e 1886 g
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Chapter 6: Point Estimation

27.
a-1_-Sx/b
XX, ... X e
a f(xl,...,xn;a,b):( 172 “)n , so the log likelihood is
b™G"()
[o]
: d d
(@-1q In(x)- aAX In(b)- ninGla ). Equating both — and — to
b da db
[¢]
d . _ha
oyields § In(x )- nin(b)- n—da) =0 and d 2(1 =—=0,avery
da b b
difficult system of equationsto solve.
ax
b. From the second equationina, T =na P X=ab =m,sothemleof IT is
m=X.
28.
ax O aX O expl- Sx*/2q
a g—lap[- X’ /2q]:..g—“e<p[— xn2/2q]f— (%%, ) | - J The
eq 2 eq a q
- - S
natural log of the likelihood function is In(Xi ...Xn)- nln(q)- . Taking the
o . . n i2 SXi2
derivative wrt ¢ and equating to O gives - — + > = 0,song = and
a 2
Sx? - 2
q= 2' . Themleistherefore ¢ = —— , whichisidentical to the unbiased
n
estimator suggested in Exercise 15.
, _ é- x%0 ,
b. For x> 0thecdf of X if F(x;q) = P(X £ X) isequal to 1- &Xpg——(- Equating
€2 q
é x%0
thisto .5 and solving for x givesthe medianintermsof : .5= eXp g——(implies
e
- X2
that In(.5) = , 50 X =M=4/1.38630. Themleof I istherefore
Zs|
(1.3863 )
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Chapter 6: Point Estimation

29.
a.  Thejoint pdf (likelihood function) is

i|ne'sta) y s x 3
f(X, ., n’l’q) 1 q 'n q

| 0 otherwise
Noticethat X, 3 q,....X, 2 q iff min(x )3 q,
andthat - | S(x, - q)=-1Sx +nlq.

11 "exp(- | S Jexp(nl min (x )3

Thusl|kel|hood—| p( ') p( q) ) (X') d
7 0 min (x ) <g
Consider maximization wrt ( . Because the exponent Nl q is positive, increasing
will increase the likelihood provided that min ()(i ) 3 (; if wemake ( larger than
min (x, ), the likelihood dropsto 0. Thisimpliesthat themleof @ isq = min (x ).

Thelog likelihoodisnow nin(1 ) - | S(Xi - q). Equating the derivativewrt | to 0
n n

Sk-a) S -nd

. . 10
b. G =min(x)=.64, and Sx =55.80 50| =— 0 = 202
q (%) ana =% *' T55.80- 64

and solving yields | =

30.  Thelikelihoodis f (y; n, p):a&;gpy(l- p)"" where
2

— — 24 ix — 24 A_Y ; ;
p=P(X3 24)=1- Q | e “dx=¢e" . Weknow p =-=, soby theinvariance
n

principle e 2% = y P I [l ( )] =.0120 forn=20,y = 15.

Supplementary Exercises

-60

31. qu_rd>e):P()T- m>e)+P()T- m< - e Pg;/J_ S/«/_z+PgS /«/_ S/«/_ra
_\/ﬁe ,\/—e ¥ 1 Jrers 1

—PZ>——+PZ< e %z +

s 5 Sv(ke/s@ 04\/5

L e?ig=0,

Ny

2
e *'%dz.

¥
AsN® ¥  bothintegrals ® Osmcel (‘)
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32.

33.

34.

Chapter 6: Point Estimation

sp
a F(y)=PY£y)=P(X,£y,..X, £y)=P(X, £y)..P(X, £y)= %%

n-1
for OEy £(q,so fY(y)Z ny

n

", _.n oty _ n+l,
b. E(Y)= va dy—n q.Whlleq—Y|snotunb|ased,TY|s,smce

en+1 u_ n+1 () n+l n

, doesthetrick.
Sn H n n+1 n

Let x; = thetime until the first birth, x, = the elapsed time between the first and second births,
andsoon. Then f(X,,...,x,;l )=l e 2 Je?*%..(nl Je™* =nll "e’' % Thus

d
thelog likelihood is In(n!) + nin(l )- | Skx, . Taking T and equating to 0 yields

. Forthegivensample, n =6, x; =25.2, % =41.7—252=16.5x =9.5,% =

a kx
k=1
6
43,%=40,% =230 g kx =(1)(25.2) + (2)(16.5) +...+ (6)(2.3) =137.7 and
k=1
T=_% - o436
137.7

MSE(KS?) = Var (KS?) + Bias(KS?).
Bias(KS?) = E(KS?)-s 2 =Ks 2-s 2 =s 2(K - 1), and

Var (KS?) = K Var (S%) = KZ(E[(SZ)Z]- [E(Sz)]z)z 284n+1)5 4 ( )

Q- |O=

2U d
—g—+ (k - 1) (& - Tofindtheminimizing value of K, take d_K and equate to 0;
u

n-1
theresultis K = —1 ; thus the estimator which minimizes M SE is neither the unbiased
n+
- 1
estimator (K = 1) nor themle K = ——
n
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Chapter 6: Point Estimation

X 235 263 280 282 294 295 306 316 339 493
257 258 264 210 275
235 | 235 249 5 5 5 26.5 5 5 287 364
211 2712 278 284 289
26.3 26.3 5 5 5 279 5 5 301 378
280 280 281 287 2875 203 298 3%9 32'6
282 282 288 288 204 299 3]5"0 327
204 204 2945 300 305 3%6 32'3
295 295 3(5)'0 3%5 317 394
30.6 306 311 22 399
5 5
327 404
316 316 5 5
339 339 416
49.3 49.3

There are 55 averages, so the median isthe 28" in order of increasing magnitude. Therefore,
=295

With & x =555.86 and § X =15,490, s=+/s? =+/2.1570 =1.4687. The

X, - X|'s are, inincreasing order, .02, .02, .08, .22, .32, .42, 53, 54, .65, .81, 91, 1.15,
1.17,1.30,1.54, 1.54, 1.71, 2.35, 2.92, 3.50. The median of these valuesis
(81+.91)

= .86 . The estimate based on the resistant estimator is then 6325 =1.275.

Thisestimate isin reasonably close agreement with s.

)
dg)x[&H

squareroot in E(S), leavingjustS . Whenn=20, C =

LeaC= . Then E(cS) = cE(S), and ¢ cancels with thetwo C factors and the

G(9.5)

qlo) %2
d9.5) = (8.5)(7.5)...(1.5)(.5)d.5) , but G(.5) =/p . Straightforward calculation
givesc=1.0132.

. J10)=9 and
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Chapter 6: Point Estimation

Thelikelihood is
1 _(xi-mp) 1 _(yi-m) 1
7

e 2s X e 32

1 lzpsz \’2{)82 (2ps 2)”

- m B+S(y,- d
likelihood is thus - nIn(Zpsz)- (S()ﬂ mf f(y' m)z). Takingd— and equating to
m

Bli-m)?esly-m 28
e x* . Thelog

Us

2s

~ X Y, ~
zero gives M = Y . Substituting these estimates of the IM'S into the log
likelihood gives
Bw XtVO, g@® X+Y60
- nin{2ps ?)- 163 & - = +acy - T
- 2 g T8 2 g5
d
=- nIn(ZpS 2)- ( (X - y,) ) Now taking 02 , equating to zero, and
S

solving for S 2 givesthe desired result.

" 1
Els )=—
(s) 4n

E(s(xi - Y)z):%ﬁE(Xi - Y), but

E(X, - Y)* =V (X, - ¥) +[E(X, -
2

Els?)= iS(Zs ?) =L ons 2 =3 o themleisdefinitely not unbiased; the
4n 4n 2

Y)]2 =252+0=25 2. Thus

expected value of the estimator is only half the value of what is being estimated!

218



CHAPTER 7
Section 7.1

a 2z, =28limpliesthat %% =1- F (2.81)=.0025, s0a =.005 and the confidence
level is 100(1- a )% = 99.5%.

b. 7, =144 fora = 2[1- F(L.44)]=.15, and 100(1- a }% = 85%.

c. 9.7% impliesthat a =.003, 24 =.0015, and z,,,; = 2.96. (Look for cumulative
area .9985 in the main body of table A.3, the Z table.)

d. 75%impliesa =.25, 3, =.125, and 2, =1.15.

2.
. . _ 114.4+115.6
a  Thesample mean isthe center of theinterval, so X = # =115.
b. Theinterval (114.4, 115.6) hasthe 90% confidence level. The higher confidence level
will produce awider interval.
3.

a. A 90% confidence interval will be narrower (See 2b, above) Also, the z critical valuefor
a90% confidence level is1.645, smaller than the z of 1.96 for the 95% confidence level,
thus producing a narrower interval.

b. Not acorrect statement. Once and interval has been created from a sample, the mean 1

is either enclosed by it, or not. The 95% confidence isin the general procedure, for
repeated sampling.

c. Not acorrect statement. Theinterval isan estimate for the population mean, not a
boundary for population val ues.

d. Notacorrect statement. Intheory, if the process were repeated an infinite number of
times, 95% of the intervals would contain the population mean 1.
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Chapter 7. Statigtica Intervals Based on a Single Sample

1.96(3) _
58.3+ ———=-/ = 58.3+1.18 = (57.1,59.5
o ( )
1.96(3) _
58.3+ ~—-/ =58.3+.59 = (57.7,58.9
/100 ( )
5g.3+ 2288) 5803) _ =58.3+.77 = (57.5,59.1)

82% confidence P 1-a =.82P a =.18P 3,=.09,s0 7, =7y, =1.34 and

1343 _(
1

theinterval is 58.3% =(57.9558.7).

62(2.58)30°

_e
- = 239.62 son=240.
& 1

(1.96)(.75)

4.85+ = 4.85+.33 = (452,518).

(2.39)(.75)

Z,, = Zy = Zy = 2.33, sotheinterval is 4.56 £ = (4.12,5.00).

e2(1 96)(.75)f
"8 a0 H

=54.02,son="55.

_ 62(2.58)(.75)u°

e
~—~ 7 - =03.61,s0n=94.
g 2 H

1.645)(100)

8439+ ( =8439+ 329 = (8406.1, 8471.9).

1-a =.92P a =.08P 34,=.04 502, =2, =175



Chapter 7. Statigtica Intervals Based on a Single Sample

S
If L= 2ny —— and we increase the sampl e size by afactor of 4, the new length is
) Jﬁ
S € S
L¢= 22"/ — eZ y Uaelo . Thus halving the length requires n to be
Adn @ «/—lpZﬂ

. L .
increased fourfold. If N(=25n, then L¢= E so thelength is decreased by afactor of 5.

a.  With probability 1- a , Z,, £ X mg\/—_ﬁz"l These inequalities can be
manipulated exactly aswas donein thetext toisolate IT; theresultis

X - z,, I£m£X+%1/_soa100(l a)%|nterva||s
R T

S
b. Theusual 95% interval has length 3.92—, while thisinterval will have length

/n
(z +2Z )T With Z, = Z4),5 =2.24 and Z, = Z 5,5 =1.78, thelength is
n
(2.24+ 1.78)% = 4.0257 , which islonger.
n n
a ée)'(- 1.6458—,¥g. From5a X =4.85,5 =.75,n=20;
«/ﬁ z
4.85- 1.645-— = 45741, sotheinterval is (4.5741,¥ ).
\/_
& _ s 0O
b. EX- 72 —,¥=
“ s
ae — 0
c X+ —: From4a, X =58.3,s =3.0,n=25
N
58.3+ 233 = (- ¥ 59.70)
J25
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Chapter 7. Statigtica Intervals Based on a Single Sample

10.
o]
a Whenn=15 2l @ X, hasachi-squared distribution with 30 d.f. From the 30 d.f. row

of Table A.6, the critical valuesthat capture lower and upper tail areas of .025 (and thus a
central areaof .95) are 16.791 and 46.979. An argument parallel to that givenin
22y x 2§ x 0 1
Example 7.5 gives € ax , a X ~asa9%%C.l.for m=—. Since
46.979 16.791 I

a X, = 63.2 theinterval is (2.69, 7.53).

b. A 99% confidencelevel requires using critical valuesthat capture area.005 in each tail of
the chi-sguared curve with 30 d.f.; these are 13.787 and 53.672, which replace 16.791
and 46.979 ina.

1 L o1
C. V(X ) = |—2 when X has an exponential distribution, so the standard deviationis —,

the same asthe mean. Thustheinterval of aisaso a95% C.I. for the standard deviation
of thelifetime distribution.

11. Y isabinomial r.v. with n=1000 and p = .95, so E(Y) = np = 950, the expected number of
intervalsthat capture IM, and S , =+/NPQ =6.892. Using the normal approximation to

the binomial distribution, P(940 £ Y £ 960) = P(939.5 £ Ynoma £ 960.5) = P(-1L52 £ Z £ 1.52)
= 9357 - 0643 = 8714,

Section 7.2

12, X+258-3 = 81+ 258% = g1+ 08=(73,89)
n 110

13.

a X2z, — =10282 1.96% =1.028+.038 = (.990,1.066)
n

2(1.96)(.16)

b. w=.05= p Jﬁz%zﬂ.%p n=(12.544)" »158



14.

15.

16.

17.

18.

19.

Chapter 7. Statigtica Intervals Based on a Single Sample

3.73
a 89.10+1.96——— =89.10+ .56 =(88.54,.89.66). Yes, thisisavery narrow
/169 ( )

interval. It appears quite precise.

, 2
= ME‘ =24586b n=246.

b.
g 5
a z, =.84,and F (84) =.7995 » .80, so the confidence level is 80%.
b. z, =2.05, and F (2.05) =.9798 » .98, so the confidence level is 98%.
c. z, =.67,and F (.67) =.7486 » .75, so the confidence level is 75%.

n=46, X = 382.1, s=31.5; The 95% upper confidence bound =

=382.1+1.645— 315 _ =382.1+7.64=389.74

7(+zdI T

X - =135.39- 2. 334—59 =135.39- .865=134.53 with aconfidence

Ol«/— «/ﬁ

level of 99%, the true average ultimate tensile strength is between (134.53, ¥).

1.30
90% lower bound: X - Z =4.25- 1.28——=4.06
10 —\/— _\/%
. 201 _
p= ﬁ =.5646 ; We calculate a 95% confidence interval for the proportion of all dies

that pass the probe:
2 2
(1.96) +1.96 (5646)(4354) , (1.96)
2(356) 356 4(356)° _ 5700+ .0518
(1.96)° 1.01079
+
356

5646 +

=(513,.615)
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Chapter 7. Statigtica Intervals Based on a Single Sample

20. Because the sample sizeis so large, the ssimpler formula (7.11) for the confidence interval for
p issufficient.
15+ 2.58, /—(15 \85) _ 15+ .013=(.137,.163)
4722
21. p= % =.2468 ; the 95% lower confidence bound is:
2 2
468 + (1.645)° Leds J (2468)(7532) , (1.645)2
2(539) 539 4(539)* _ .2493- .0307 _ 18
14 (1645) 1.005 '
539
22. P =.072; the 99% upper confidence bound is:
2 2
o072+ (2337 , )33 (072)(928) , (2:33) :
2(487) 487 4(487)° _ .0776+.0279 _ 1
141233 10111
487
23.
.24 _ _ :
a p= By =.6486; The 99% confidence interval for pis
2 2
486+ (2.25;)) 4258 J (.64863?&3514) . (2.58)2
2 4(37)° _.7386+.2216 _ (438.814)
(2.58) 1.1799
142
37

2(2.58)7(25)- (2.58)%(.01) £+/4(2.58)" (25)(.25- .01) +.01(2.58)*
01

_ 3.261636 + 3.3282 5
.01

659

24. n=56 X =8.17,s=1.42; Fora95%Cl.l., z, =1.96. Theinterval is

817+ 1.966‘1'—429 = (7.798,8.542). We make no assumptions about the distribution if

€ /56 5

percentage elongation.
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Chapter 7. Statigtica Intervals Based on a Single Sample

25.

2(1.96)%(:25)- (1.96)7(01)++/4(1.96)"(.25)(25- .01)+.01(1.96)" 5 381
.01

20,96 (3¢)- (L96)° (012 1/4(1.9)'(5 ¢3¢ - 0+ 0x0g)"
01

a nh=

b. n=

A

q

S | X|

ﬂ%l
0
o)
wn

26. with g =1 ,q =X and S = . Thelarge sample C.I. isthen

X

X o -
* Za,21,—. Wecaculate @ X; = 203, so X =4.06, anda95% interval for | is
n

2.
4.06+1.96, /% = 4.06+.56 =(3.50,4.62)

2
X+—

2 X+2
> , whichisroughly —— witha
n+z n+4

confidence level of 95% and approximating 1.96 » 2. The variance of this quantity is

27. Note that the midpoint of the new interval is

—np(l- pz) , or roughly M . Now replacingp with LZ , we have
(n + 22) +4 n+4

axX+ 20, X+20

C . :
&+ 20 n+4 n+4 _ * *
g—+izzy € z g;ForcIarlty,IetX =X+2andnN =n+4,then
en+4dg ”~ n+4
X s p g _ _
P =-— andtheformulareducesto P =* Z, —— , thedesired conclusion. For

n n

further discussion, seethe Agresti article.

N

Section 7.3

28.

a 1341
d. 1684

e 2704



29.

30.

31

32.

Chapter 7. Statigtica Intervals Based on a Single Sample

a o = 2.228
b. om0 = 2.086

C. logsp0 =2.845

8 tosio =2.228
b. topss = 2131

C. topsis = 2.947

a  tyy =1.812

b. toss =1.753

o

tonss = 2.602

tooss0 = 2.678

toups = 2485
- topes = - 2571
tooss = 4.604
to1pa = 2.492

toossr » 2.712

to., = 3.747
» tps 4 = 2.064

to s » 2,429

df.=n-1=7, sothecritical valuefora95% C.l.ist o5, = 2.365. Theinterval is

30.2 + (2.365)

3.10

—==30.2+ 2.6 =127.6,32.8).
£ 75 ( )
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34.

Chapter 7. Statigtica Intervals Based on a Single Sample

The boxplot indicates avery slight positive skew, with no outliers. The data appearsto
center near 438.

T T T T T T
420 430 440 450 460 470

poymer

Based on anormal probability plot, it is reasonable to assume the sample observations
came from anormal distribution.

With d.f. = n—1=16, thecritical valuefor a95% C.l.ist s, = 2.120, and the

interval is 438.29 + (2.120 ?33‘ 0= 43829+ 7.785 = (430.51,446.08).

7]
Since 440 iswithin the interval, 440 is aplausible value for the true mean. 450, however,
isnot, sinceit lies outside the interval.

n=14, X =8.48,s=79; t s ,, =1.771

2e790_

a A 95% lower confidence bound: 8.48- 1.771¢——+=8.48- .37 =8.11. With

evld g
95% confidence, the value of the true mean proportional limit stress of all such jointslies
intheinterval (8.11,¥ ) If thisinterval is calculated for sample after sample, in the
long run 95% of these intervals will include the true mean proportional limit stress of all

such joints. We must assume that the sample observations were taken from a normally
distributed popul ation.

1
A 95% lower prediction bound: 8.48- 1.771(.79); /1+ 1; =848-145=7.03. i

thisbound is calculated for sample after sample, in the long run 95% of these bounds will
provide alower bound for the corresponding future values of the proportional limit stress
of asinglejoint of thistype.
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36.

37.

Chapter 7. Statigtica Intervals Based on a Single Sample

n=5, X =2887.6,s=840; t )., = 2.776

a A 95%C..forthemean: 2887.6 + + 2 776 gJ_ 2783 3,2991. 9)

b.

1
A 95% Prediction Interval: 2887.6+ 2.776(84), /1+ =P (2632.1,3143.1). The

P.I. isconsiderably larger than the C.I., about 2.5 times larger.

n=26, X =370.69,s=2436; t ,; ,, = 1.708

a

A 95% upper confidence bound:

370.69+ (1.708)%5@9_ 370.69+8.16 = 378.85

26 5

A 95% upper prediction bound:

370.69 +1.708(24.36), /1+ % = 370.69+ 42.45 = 413.14

Following asimilar argument as that on p. 300 of the text, we need to find the variance of
- X V(X - X )=V(X)+V(X,,) = v(x)+v( (X, + X))
=V X)+V( X27)+V(%X28)_V(x)"'%v(xﬂ)"'ZV(xza)

2 ' __ \Va
S ls2y1s2 =S g—+19 Weeventually arriveat T —iﬂ
n 4 4 e2 nNg i

><I

%‘ +
Sl She

distribution with n— 1 d.f., so the new prediction interval is X £t,,, ., X5/3++ . For

this situation, we have

1 1
370.69+1.708(24.36), /5 +os =370.69%3053= (39.47,400.53)

A 95%C..: 9255+ 2.093(.0181) = .9255+.0379 b (.8876,.9634)

A 95%P.. : 9255 + 2,093(.0809),/1+ 4 =.9255+.1735p (.7520,1.0990)

A toleranceinterval isrequested, with k =99, confidence level 95%, and n=20. The
tolerance critical value, from Table A.6, is3.615. Theinterval is

9255 + 3.615(.0809) b (.6330,1.2180).
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39.
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N =25 X =.0635, s=.0065
a  95%Pl.: 0635+ 2.064(.0065),/1+L =.0635+.0137 b (.0498,.0772).

b. 99% Tolerance Interval, with k = 95, critical value 2.972 (table A.6):
0635+ 2.972(.0065) b (.0442,.0828).

Normal Probability Plot

.999
.99 4

.95 4 .
2 .80 -
‘3 50 -
o
S 20
o
.05 4
.01 4
.001 4
T T T
30 50 70
volume
Average: 52.2308 Anderson-Darling Normality Test
StDev: 14.8557 A-Squared: 0.360
N: 13 P-Value: 0.392

Based on the above plot, generated by Minitab, it is plausible that the popul ation
distribution is normal.

b. Werequireatoleranceinterval. (from table A6, with 95% confidence, k = 95, and n=13,
thetcv = 3.081.

X *(tcv)s =52.231+ 3.081(14.856) =52.231+ 45.771b (6.460,98.002)

c. A predictioninterval, with t .., = 2.179:
52.231+ 2.179(14.856),/1+ & = 52.231+33.593b (18.638,85.824)
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Chapter 7. Statigtica Intervals Based on a Single Sample
40.
a.  Weneed to assume the samples came from anormally distributed popul ation.

b. A Normal Probability plot, generated by Minitab:
Normal Probability Plot

.999 4
.99 4 .
.95
2 .80
S 50
Qo
© 20
o
.05 4
.01 4
.001 4
T T T
125 135 145
strength
Average: 134.902 Anderson-Darling Normality Test
StDev: 4.54186 A-Squared: 1.065
N: 153 P-Value: 0.008

The very small p-value indicates that the population distribution from which this data was
taken is most likely not normal.

c. 95% lower prediction bound:

52.231+ 2.179(14.856),/1+ 4 = 52.231+33.593b (18.638,85.824)

41. The 20 d.f. row of Table A.5 showsthat 1.725 captures upper tail area .05 and 1.325 captures
uppertail area.10 The confidence level for each interval is 100(central area)%. For the first
interval, central area= 1 — sum of tail areas=1— (.25 + .05) = .70, and for the second and
third intervalsthe central areasare 1 — (.20+.10) =.70and 1— (.15 +.15) = 70. Thuseach
interval has confidence level 70%. Thewidth of thefirst interval is

s(.687 +1.725) _ .2412s _ -
= , Whereas the widths of the second and third intervals are 2.185

Jn Jn
and 2.128 respectively. Thethird interval, with symmetrically placed critical values, isthe
shortest, so it should be used. Thiswill alwaysbetruefor atinterval.
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Section 7.2
42,
a C_i15 = 22.307 (.1 column, 15 d. c_§05’25 =46.925
d.f. row)

43.

44,

45,

46.

e 0_59'25 =11.523 (from .99

2 _
b. €1, =34381 column, 25 d.f. row)

C. Copps =44.313 f.  Cogsss =10.519

a  C sy =18.307 b, C g0 =3.940

¢ Since10.987 =C2,,, and 36.78 = C 2, 5, P(C 2e 5, £ C2 £ C 20y ) =.95.
d. Since 14.61= 2, and 37.65= C %, Pc 2, £ C 2 £C 2 ) =.90.
n-1=8, 0_325’8 =17.543, 0_375,8 =2.180, sothe 95% interval for S * is

28(7.90) 8(7.90)5_

$17543' 2180 »

(V360,4/28.98)= (1.905.38).

(3.60,28_98). The95%interval for S is

n =22 impliesthat d.f. = n— 1 =21, so the .995 and .005 columns of Table A.7 givethe
necessary chi-squared critical values as 8.033 and 41.399. Sx, =1701.3 and

Sx? =132,097.35, so s = 25.368. Theinterval for S ° is

?1(25'368),21(25'368)9: (12.868,66.317) and that for s is (3.6,8.1) Validity of
e 41.399 8.033 g

thisinterval requires that fracture toughness be (at least approximately) normally distributed.

a.  Using anormal probability plot, we ascertain that it is plausible that this sample was
taken from anormal population distribution.

b. Withs=1579,n=15and c 3 ,, = 23.685 the 95% upper confidence bound for S

14(1.579)?
23.685

=1214
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Supplementary Exercises

47,

a n=48 X =8.079,s*=23.7017, and s = 4.868.
A 95% C.I. for M =thetrue average strengthis

s 4.868
X +1.96—— =8.079+1.96—— = 8.079+1.377 = (6.7029.456
Jn J48 ( )

b. P 13 .2708. A 95%C.l.is
48

2 2
708+ 19”11 06 \/(.2708)(.7292)+ 1.962
2(48) 48 4agf _ 310821310 _
, 1967 1.0800
48

.166,.410)

1

48. A 98%tCl. requirest, , , =t s =2.896. Theinterval is

188.0+ 2.896% =188.0+7.0=(181.0,195.0).

49,
a. Thereappearsto be aslight positive skew in the middle half of the sample, but the lower
whisker is much longer than the upper whisker. The extent of variability israther
substantial, although there are no outliers.

T T T T
20 30 40 50

%porevolume

b. The pattern of pointsin anormal probability plot isreasonably linear, so, yes, normality
isplausible.
c. n=18 X=38.66, s=8473,and t,;,, = 2.586. The98% confidenceinterval is
8.473

38.66 + 2.586—— =38.66 + 5.13 =(33.53,43.79).
s (32554379
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51.

52.

Chapter 7. Statigtica Intervals Based on a Single Sample

X = the middle of theinterval = 229.764 ; 233.502 = 231.633. Tofindsweuse

, s 0
width = 2(t_025’4 Eeﬁ; and solvefors. Here,n=5, t,;, = 2.776, and width = upper

imit - lower limit = 3738, 3.738 = 2(2776)—~ b s= 5(3.738) _ 1.5055. Sofor
5 2(2.776)
a99%Cl., ts, =4.604, and theinterval is
231.633+ 4.604 1'3%55 = 213.633+3.100 = (228.533,234.733).
a p _136 _ 680P a9%C..is
200
2 2
oL 410 (SOLE0) 155
. - BB LOA7 (.624,732)
1.645 1.01353
1+
200
L ne 2(1.64572(.25)- (L645%(.057 ++/4(1.645*(.25(.25- 0025) +.05*(1.645)"
' .0025
_ 1.3462+1.3530

=1079.7 P usen=1080

.0025

c. No,itgivesa95% upper bound.

a Assuming normality, t os .o =1.753, dos95%Cl.I. for IT is

036
21441753 = 214+ 016 = (198,230
= ( )

2
b. A 90% upper bound for S , with ¢ 2/, =1.341, is % =+.0145 =.120

c. A 95% predictioninterval, with t ., . = 2.131,is
214 + 2.131(.036 )\/1 + L = .214 +.0791 = (.1349,.2931).
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Chapter 7. Statigtica Intervals Based on a Single Sample

With qA:%()T +X,+X,)- X, s2=4%Var (X, + X, + X3 )+ Var (X,) =
1o 2 1 S S 3 9+ S 42 .

9§ n, nsz n,
squareroot. Thelarge-sampleinterval for g isthen

1% S s?
1 (= — — 1 2 3
E(X1+X2+X3) 4t a/Z\/ §_+ n_

“q. is obtained by replacing each 5™ > by s? and taking the

2
+ 34 For thegiven data, q =-.90,
I”14

Q I-1-O:

=.1718 , sotheinterval is- .50+ 1. 96( 1718) - .84.- .16) .
3) S 2P a9%0%Cl.is
55

2 2
oy 12645 1645 \/(.2)(.8)+1.645

55 55 4(55)° _.2246+.0887
1.6452 1.0492
55

= (.1295,.2986).

1+

The specified condition is that the interval belength .2, so N =

¢2(L.96)(8) 0"
& 2 H

n = 246 should be used.

a. A normal probability plot lends support to the assumption that pulmonary complianceis
normally distributed. Note also that the lower and upper fourths are 192.3 and 228,1, so
the fourth spread is 35.8, and the sample contains no outliers.

b. tgs5 =2.131, s0theCll.is
24.156
J16

c. K =95,n=16, andthetolerance critical valueis 2.903, so the 95% tolerance interval is

209.75 + 2.903(24.156) = 209.75+ 70.125 = (139.625,279.875).

209.75+2.131 = 209.75+12.87 =(196.88,222.62).

@2t 2, 9
2 a2 =
Ciapr Copr

wheret, =y, +...+y, +(n- r)y,. InExample6.7,n=20,r =10, and, = 1115. Wit

d.f. = 20, the necessary critical values are 9.591 and 34.170, giving theinterval (65.3, 232.5).
Thisisobviously an extremely wide interval. The censored experiment provides less

information about -+ than would an uncensored experiment with n = 20.

1 C
Proceeding asin Example 7.5 with T, replacing SX theC.l.for — is'
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Chapter 7. Statigtica Intervals Based on a Single Sample

P(min( X;) £ M£ max( X,)) =1- P(m<min( X,)or max( X,) < m)
=1- P(M<min( X;)) - P(max( X;) <m)

=1- P(M< X,,... m< X )- P(X; <m,..., X, <m)

=1- (.5)n - (.5)n =1- 2(.5)”’1,fromwhichtheconfidenceinterval follows.

Since min( %) =1.44 and max( x; ) = 3.54, theC.l.is(1.44, 3.54).

P(X(Z) £mE X(n_l)) =1- P(m< X(z)) - P(X(n_l) <m)
=1— P( at most one X, isbelow IT)— P(at most one X, exceeds IT)

1- (5)" - ?Ig(s)l(.s)”'l- (5)"- g%.s)n-l(.s).

=1- 2(n+12)(5)" =1- (n+1)(5)""
Thus the confidence coefficient is 1- (n + 1)(.5)”’ ' orinanother way, a
100(1 - (n+1)(5)"* )% confidenceinterval.

Qanpn _ aleary . a a _ -
@/2)1’” nu™idu=u ](alz)lln =1- E- E—l- a . From the probability
AL _a/Vh
statement, L £1£ M with probability 1- @ , so taking the
max Xi) g max Xi)

ax(X,) mex(X,)9

L% &Y 5

reciprocal of each endpoint and interchanging givesthe C.I. é

forg.

max( X.
a’ £#£1withprobabi|ityl-a,sol£ 9 ¢ L Lin
a max(X,) a*
max (X, )6

probability 1- & ,whichyieldstheinterval gemax(xi ),—yv.
e a”

Itiseasily verified that theinterval of bis shorter — draw agraph of fU (u) and verify

that the shortest interval which capturesarea 1- @ under the curve isthe rightmost such
interval, which leadstothe C.I. of b. Witha =.05, n=5, max(x)=4.2; thisyields (4.2,

7.65).
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. . S
Thelength of theinterval is (Zg +Z. )—

NP

minimized, i.e. when F '1(1- g)+ F '1(1- a +g) isminimized. Taking di and
g

where F ( ) isthe standard normal p.d.f.,

whichisminimized when Z, + 7, _, is

1
F(1-g) F(-a+g)

equating to O yields

whence g = a
>

X = 76.2, thelower and upper fourths are 73.5 and 79.7, respectively, and f_ = 6.2. The

robust interval is 76.2+ (LIS o= 2= 76 2.+ 2.6 = (73.6,78.8).

225

X =77.33,5=5037,and t s ,, = 2.080, sothetinterval is

77.33% (2. oso)aéoi9 =77.33+2.23=(75.1,79.6). Thetinterval iscentered at

eV22 g

X , whichispulled out to theright of X by the single mild outlier 93.7; the interval widths
are comparable.

a  Since 2| SX, hasa chi-squared distribution with 2n d.f. and the area under this chi-

squared curve to the right of 095 on 15.95, P( 9520 <2 SXi):.95. Thisimplies

2

.95,2

that isalower confidence bound for | with confidence coefficient 95%. Table

[
A.7 givesthe chi-squared critical value for 20 d.f. as 10.851, so the bound is
10.851

——————=.0098 . We can be 95% confident that | exceeds.0098.
2(550.87)

b. Arguingasina, P(Zl SX, < 0_35’2n)=.95. Thefollowing inequalities are equivalent
tothe onein parentheses:

é-tc2.,. U

b e <epa o520 o

8 25X, §

Replacing the SX; by SX in the expression on the right hand side of the last inequality

2 2
| C.os,zn b -lt< - tC.os,zn

<
25X, 25X

gives a95% lower confidence bound for € '* . Substituting t = 100, C_CZ)SV20 =31.410

and Sx, = 550.87 gives.058 asthe lower bound for the probability that time until
breakdown exceeds 100 minutes.
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CHAPTER 8

Section 8.1

a. Yes. Itisan assertion about the value of a parameter.

b. No. The sample median X isnot aparameter.
c. No. The sample standard deviation sis not a parameter.

d. Yes. Theassertionisthat the standard deviation of population #2 exceeds that of
population #1

e. No. X and Y arestatisticsrather than parameters, so cannot appear in ahypothesis.

f. Yes. Hisan assertion about the value of a parameter.

: a. These hypotheses comply with our rules.
b. H,isnotanequdlity claim (eg. S =20), so these hypotheses are not in compliance.
c. H, should contain the equality claim, whereas H, does here, so these are not |egitimate.
d. Theasserted valueof M - M, inH, should also appear in H,. It does not here, so our
conditions are not met.
e. Each S’ isastatistic, so does not belong in a hypothesis.
f.  Wearenot allowing both H, and H, to be equality claims (though thisis allowed in more
comprehensive treatments of hypothesistesting).
g. These hypotheses comply with our rules.
h. These hypotheses arein compliance.
3. In thisformulation, H, states the welds do not conform to specification. This assertion will

not be rejected unless there is strong evidence to the contrary. Thus the burden of proof ison
those who wish to assert that the specification is satisfied. Using Ha: ™ < 100 resultsin the

welds being believed in conformance unless provided otherwise, so the burden of proof ison
the non-conformance claim.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

When the alternativeisHy ™ < 5, the formulation is such that the water is believed unsafe

until proved otherwise. A typel error involved deciding that the water is safe (rejecting Ho)
whenitisn't (Ho is true). Thisisavery serious error, so atest which ensuresthat this error is
highly unlikely isdesirable. A typell error involvesjudging the water unsafe wheniitis
actually safe. Though aseriouserror, thisisless sothanthetypel error. It isgeneraly
desirable to formulate so that the type 1 error is more serious, so that the probability of this
error can be explicitly controlled. UsingHa: M > 5, thetypel error (now stating that the

water is safe when it isn't) isthe more serious of the two errors.

Let S denotethe population standard deviation. The appropriate hypotheses are
H,:s =.05vs H, :s <.05. Withthisformulation, the burden of proof ison the data

to show that the requirement has been met (the sheaths will not be used unless H,, can be
rejected infavor of H,. Typel error: Conclude that the standard deviation is < .05 mm when
itisreally equal to .05 mm. Typell error: Conclude that the standard deviationis.05 mm
whenitisredly <.05.

H,:m=40vs H_, : m* 40, where IT isthe true average burn-out amperage for this

type of fuse. The alternative reflectsthe fact that adeparture from 1 = 40 in either

direction isof concern. Noticethat inthisformulation, it isinitially believed that the value of
IT isthe design value of 40.

A typel error hereinvolves saying that the plant is not in compliance when infact it is. A
type Il error occurs when we conclude that the plant isin compliance when in fact itisn't.
Reasonabl e people may disagree as to which of the two errorsis more serious. If in your

judgement it isthe type |1 error, then thereformulation H, : m=150 vs H, : m<150
makes the type | error more serious.

Let M = the average amount of warpage for the regular laminate, and M, = the anal ogous

value for the special laminate. Thenthe hypothesesare H, :m =m, vs H, :m >m,.

Typel error: Conclude that the special |aminate produces less warpage than the regular,
when it really doesnot. Typell error: Conclude that there is no differencein the two
laminates when in reality, the special one produces less warpage.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

R; ismost appropriate, because x either too large or too small contradicts p = .5 and
supportsp 1 5,

A typel error consists of judging one of the tow candidates favored over the other when
in fact thereisa50-50 split in the population. A type Il error involves judging the split to
be 50-50 when it is not.

X hasabinomial distributionwithn=25and p=0.5. & =P(typel error) =
P(X £ 7orX 3 18 when X ~Bin(25, .5)) = B(7; 25,.5) + 1 - B(17, 25,.5) = .044

b(.4)=P(8£ X £17whenp=4)=B(17; 25,5) - B(7, 25,4) = 0.845, and
b(.6)=0.845 aiso. b(.3) = B(17;25,.3) - B(7;25,.3) =.488=b(.7)

X =6isinthergectionregion Ry , so Hy isrejected in favor of H,.

H, :m=1300 vs H, :m>1300

X isnormally distributed with mean E(X) = m and standard deviation
S 60

2
P(X 3 1331.26 when Hoistrue) =
, 1331.26- 1300

2=p(z3 2.33)=.01
13416 g

=13.416. WhenH, istrue, E()_() =1300. Thus

5
8l

bel

a

8

P

DO
N

When m =1350, X hasanormal distribution with mean 1350 and standard deviation
13.416, s0 b (1350) = P(X <1331.26 when nr = 1350) =
& . 1331.26- 1350 9

PCZE 2=P(z£ - 1.40) = .0808
& 13416 g

¢- 1300 =1.645 (since

Replace 1331.26 by ¢, where c satisfies
P(z 3 1.645) =.05). Thusc=1322.07. Increasing@ givesadecreasein b ; now
b(1350) = P(z £ - 2.08) =.0188.

5 1331.26- 1300 ieiff z3 2.33.
13.416

X3 1331.26 iff z
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H,:m=10vsH_ :m? 10

a = P( rgjecting H, when Hyistrue) = P(X 3 10.1032 or £ 9.8968whenr =10).
Since X isnormally distributed with standard deviation

S = 32 =.04,a = P(2°® 2.580r £ - 2.58) = .005+.005= .01

An

when =101, E(X) =10.1, so b(10.1) = P(9.8968 < X <10.1032 when
nm=10.1 = P(-5.08 < 2<.08) =.5319. Smilaly,

b(9.8) = P(2.42 < z<7.58) =.0078

c=x2.58
Now S - —2 =.0632. Thus 10.1032 is replaced by ¢, where c- 10 =
Jn  3.162 0632

and so ¢ =10.124. Similarly, 9.8968 is replaced by 9.876.

X =10.020. Since X isneither 3 10.124 nor £ 9.876, itisnot in the rejection
region. H, isnot rejected; it isstill plausible that I =10.

X2 10.1032 or £ 9.8968 iff z3 2.58 or £ - 2.58.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Let IM =true average braking distance for the new design at 40 mph. The hypotheses are
H, :m=120 vs H, :m<120.

R» should be used, since support for His provided only by an X value substantially
smaller than 120. ( E(Y) =120 when H, istrueand , 120 when H,istrue).

s 10

S; =——==—=16667,s0a =P (X3 115.20 when m =120) =
6 ( )

p‘é%g MQ: (z£ - 2,88)2 .002. Toobtaina =.001, replace
e 1.6667 g

11520 by ¢ =120- 3.08(1.6667) =114.87, so that P(X £ 114.87 when
m=120) = P(z £ - 3.08) =.001.

b(115) = P(X >115.2 when I = 115) = P(z >.12) = .4522

a =P(z £ -2.33) =.01, because when H, istrue Z has a standard normal

distribution ( X has been standardized using 120). Similarly P(z £ - 2.88) =.002,
so this second rejection region is equivalent to R,.

& g’m) 12335 %2

- - p% ng+
whenm=m)) = Pcz® S +
&

= P(Z 3 2.33) = .01, where Z isastandard normal r.v.

S

Jn

P(X3 m, +2.33

P(rejecting H, when i = 99) = P(X 3 102.33 when nr = 99)

= p&%e 102- 995 - P(z 3 3.33)=.0004. Similaly, a (98) = P(X 3 102.33
e (%]

when m=98) = P(z3 4.33) = 0. Ingeneral, we have P(typel error) < .01 when
this probability is calculated for avalue of " lessthan 100. The boundary value

nm =100 yieldsthelargest a .
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a Sy =.04,s0 P(X? 10.10040r £ 9.8940 when

m=10) = P(z * 2.51or £ - 2.65) =.006 +.004 = .01

b(10.1) = P(9.8940 < X <10.1004 when

nm=10.1) = P(- 5.15 < z <.01) =.5040, whereas

b (9.9) = P(-.15< z<5.01) =.5596. Since M =9.9 and i = 10.1 represent
equally serious departures from H,, one would probably want to use atest procedure for
which b (9.9) =b (10.1) . A similar result and comment apply to any other pair of
alternative values symmetrically placed about 10.

Section 8.2

15.

16.

a = P(z 3 1.88 whenzhasastandard normal distribution) =1- F (1.88) =.0301
a =P(z £-2.75 whenz~N(0,1) = F (- 2.75)=.003

a=F(-288)+(1- F(288))=.004

a = P(t 3 3.733 whent hasat distribution with 15 d.f.) =.001, because the 15 d.f.
row of Table A.5 showsthat t o115 =.3733

df.=n-1=23,s0a =P(t £ - 2.500) =.01

df.=30,and @ = P(t 3 1.697) + P(t £ - 1.697) =.05+.05=.10
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_ 20,960- 20,000

1500,
s

b(20,500): F ?33+

= 2.56 > 2.33 soreject H,.

20,000- 20,5000

Z=F (1.00)=.8413
1500/~/16 & (1.00)

_ €1500(2.33+ 1.645) 1

& 0 =142.2,sousen =143
& 20,000- 20,500

b(20,500)=.05:n

a =1- F(2.56)=.0052

72.3- 75 ) =
T =-15s0723is1.5SD's(of X ) beow 75.

Hoisrejectedif Z £ - 2.33;sincez=- 1.5 isnot £ - 2.33, don’t reject H,.
a = areaunder standard normal curve below —2.88 = F (- 2.88) =.0020

7 700_ (. 1)=.4602 so b(70) = 5398

(%]

F& 288+
e

, 2
= e9(2.88 hl 2'33)9 =87.95,s0usen =88

n=~~~ - 7
g8 75-70 H
a(76) = P(Z < - 2.33 when m=76) = P(X < 72.9 when r = 76)

—p @290 £ (L 344)= 0003
1]
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Reject H, if either 23 2,58 or Z £ - 258: —— =0.3, 50

Jn
94.32- 95 . . .
Z2=———=-2.27. Since—2.27 isnot < -2.58, don’t reject H,.
1 s 1 s
b(04)=F&58- —2 F& 258- —2=F(- .75)- F(- 5.91)=.2266
e 03g e 0.3g

z 52
n= 61.20(2.58+1.28)y" _ 21.46, sousen = 22.

8 095-94 f

With He: =750, and Hy 1M < 750 and asignificance level of .05, we rgject Ho if z< -
1.645; z=-2.14 <-1.645, so we reject the null hypothesis and do not continue with the
purchase. At asignificancelevel of .01, wergject H, if z<-2.33; z=-2.14>-2.33, sowe
don’t reject the null hypothesis and thus continue with the purchase.

WithHo: m=.5,andHa M1 .5 wereject Hoif t >t,,, yort<-t ,,

a 16<ts12=2.179,s0don’t reject Hy
b. -16>-tos12=-2.179, sodon't rgject Ho
C. —26>-tgps24=-2.797, s0don’t reject Hy
d. -3.9<thenegativeof al t valuesin the df = 24 row, so wereject H, in favor of H,.
a. It appearsthat the true average weight could be more than the production specification of
200 Ib per pipe.
b. Ho: m=200,andHs M > 200 wergject Hoif t>1,,4 =1.699.
206.73- 200 _ 6.73
t= = =5.80>1.699, soreject Ho. Thetest appearsto
6.35/4/30 1.16
substantiate the statement in part a.
X - 360
Ho: M =360 vs.Hy M > 360; t = ——— rgject Hy if t >t . =1.708;
s/</n ’
370.69- 360
t=—————=2.24>1.708. ThusH, should berejected. There appearsto bea
24.36/+/26

contradiction of the prior belief.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Ho: M =3000 vs. H; I 3000; t = X- 3000, reject Ho if [t| >t g5, = 2.776;
s/+/n '
t= M =-2.99<-2776,sowereject H, . Thisrequirement is not
84/./5
satisfied.

a Honm=55vs.Hs; ml 55; foralevel .01 test, (not specified in the problem

description), reject H,, if either 23 2.58 or Z £ - 258. Since

z _525-55_ 3.33£ - 2.58, reject Ho.
075

b. 1- b(5.6)=1- F&2.58+ Yo, F&E 258- s
é 075 & 075 g

=1- F(1.25)+F (- 3.91)=.105

. ¢3(2.58+2.33)i
g -1 H

= 216.97, sousen = 217.

Reject Hy 122 1.645; —= = 7155, so 7= 22/~ 20

Jn 7155

3 1.645, reject H, at level .05 and conclude that true average penetration exceeds 50 mils.

=3.77. Since3d.77is

Wewishtotest Hy: M =75 vs. Hy M <75; Usinga =.01,H, isrejected if
73.1- 75 _

9//42

t£ -ty ,, »-2.423 (fromthedf 40 row of thet-table). Since t = -2.09,

whichisnot £ - 2.423, H, isnot rejected. Thealloy is not suitable.

With IT = true average recumbency time, the hypothesesare Ho: ™ = 20 vsH, < 20.

- : X- 20 , .
The test statistic valueis Z = , and H, should berejected if Z£ - 2,, = - 1.28
s/</n
Since Z = w =-1.13, whichisnot £ - 1.28, H, isnot rejected. The sample
8.6/73

data does not strongly suggest that true average timeisless than 20.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

a Forn=8n-1=7andt,, =1.895,s0H,isreectedat level .05if t 3 1.895.
Since — = 15 442t = % =.498; thisdoes not exceed 1.895, so

Jno 8

Ho is not rejected.

J- m, - nj _[3:50- 4.00 _
s 1.25

40, andn=8, sofromtableA.17, b (4.0) » .72

n=115 X=113, s=6.43

1 Parameter of Interest: M = true average dietary intake of zinc among males aged 65
— 74 years.
Null Hypothesis: Ho: m =15

Alternative Hypothesis: Hy: Im <15

4 S = X-m _X-15
s/Jn s/n
5 Rejection Region: No value of a was given, so select areasonable level of
significance, such asa=.05. z£z orzE-1645
11.3-
6 z=—— 1 -.g17
6.43//115
7 —6.17 <-1.645, so rgject H,. The data does support the claim that average daily

intake of zinc for males aged 65 - 74 years falls below the recommended daily
allowance of 15 mg/day.

The hypotheses of interest are Hy: MW =7 vsH, M < 7, so alower-tailed test is appropriate;

ﬁ =-1.24. Because -1.24is
1.65/+/9

not£ - 1.397, H, (prior belief) is not rejected (contradicted) at level .01.

H, should berejected if t£-t,,=-1.397. t=
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Chapter 8: Tests of Hypotheses Based on a Single Sample

32. n=12, X =98.375, s=6.1095

a
1 Parameter of Interest: M = true average reading of this type of radon detector when
exposed to 100 pCi/L of radon.
Null Hypothesis: H,: m =100
Alternative Hypothesis: H,: Im1 100
4 = X-m _ X-100
s/An s/n
5 t£-2201ort3 2201
98.375- 100
6 t=———=-.9213
6.1095/4/12
7 Fail torglect Hy. The data does not indicate that these readings differ significantly
from 100.

b. s=75b=0.10. Fromtable A.17, df » 29, thus n»30.

33. b(rn)-D):F(g,z+D\/ﬁ/s)-F(- za,z-D\/ﬁ/s)
=1-|F( z,,- D/n/s )+F(z,,- DIn/s )| =b(m +D)

(sincel-F(c)=F(-c)).

34. For an upper-tailed test, = b(m) = F(Zﬂ1 +\/E(I’T1) - m)/s ) Sincein this case we are
considering M>m,, IM, - M is negative so «/ﬁ(m) - m)/s ® -¥ asn® ¥ . The

desired conclusion follows since F (- ¥) = 0. Theargumentsfor alower-tailed and tow-
tailed test are similar.

Section 8.3
35.
1 Parameter of interest: p = true proportion of carsin this particular county passing
emissionstesting on thefirst try.
2 Ho:p=.70
3 Ha pt .70
4 _ P- P — b - .70
Z= =
Jp.l- po)/n 70(30)/n
5 eitherz3 1.960rz £-1.96
124/200- .70
6 z= =-2.469
4/.701.30 )/ 200
7 Reject Hy. The dataindicates that the proportion of cars passing the first time on

emission testing or this county differs from the proportion of cars passing statewide.
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37.

b(15)=F &

200, b(.15)=F &

€1,
n:§
e

Chapter 8: Tests of Hypotheses Based on a Single Sample

1 p = true proportion of all nickel platesthat blister under the given
circumstances.
2 Ho:p=.10
3 Hq p>.10
4 _ P- P — b_ 10
zZ= =
Jp.(t- po)/n  /10(90)/n
5 Reject Ho if z3 1.645
14/100- .10
6 Z= —————=1.33
A /.10{.90 )/100
7 Fail to Reject Hy. The data does not give compelling evidence for

concluding that more than 10% of all plates blister under the
circumstances.

The possible error we could have madeisaType |l error: Failing to reject the null
hypothesiswhen it is actually true.

€10- .15+1.645,/.10(.90)/200 U
z 0=F (- .02)=.4920. whenn=

& ,J15(85)/100 g

€10- .15+1.645,/.10(.90)/ 200U
& u=F(- .60)=.2743

& |J15(.85)/200 §

2

.10(.90) +1.28,/.15(.85) U

645 0(90) 8 5(85)(1 =19.01° = 361.4, sousen =362
15- .10 G

p = true proportion of the population with type A blood
Ho: p=.40
Ha pt 40
L= p- P, __ p-40
Jpo(1- p,)/n  4.40(.60)/n
Reject Hy if z3 258 orz £-2.58
_82/150- .40 _ .147

Z= =
4/.40‘.605/150 .04

Reject Hy. The data does suggest that the percentage of the population with type A
blood differs from 40%. (at the .01 significancelevel). Sincethe z critical value for
asignificance level of .05 islessthan that of .01, the conclusion would not change.

= 3.667
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Chapter 8: Tests of Hypotheses Based on a Single Sample

38.
a Wewishtotest Hy: p=.02vsH, p<.02; only if Hy can be rejected will the inventory be
postponed. The lower-tailed test rejects H, if z £ -1.645. With P = £ =.015,z=
-1.01, which isnot £ -1.645. Thus, H, cannot be rejected, so the inventory should be
carried out.
€02- .01+1.645,/.02(.98)/1000U
b. b(01)=Feé G=F (5.49) »1
é ,/.01(.99)/1000 a
€02- .05+1.645,/.02(.98)/1000 U
c. b(05)=Feé 4= F (- 3.30)=.0005, soisp=
é \/-05(.95)/1000 g
.05 it ishighly unlikely that H, will be rejected and the inventory will almost surely be
carried out.
39.

L et p denote the true proportion of those called to appear for service who are black. We wish to
p-.25
test Ho: p=.25vsHy p<.25. Weuse Z= _P- , with therejection region z £ -
4/.25i.755/ n
177

Zo1 =-2.33. Wecalculate ﬁ = —=.1686,and Z= M —
1050

=-6.1. Because—
.0134
6.1<-2.33, H, isregjected. A conclusion that discrimination existsisvery compelling.

40.
a. P =trueproportion of current customerswho qualify. Ho: p=.05vsHg pt .05,
_ p-05 .
= ———rgectHyifz3 258 orz £-258. p =.08, so
J05(.95)/ n
.03 . o
=———=3.073 258, s0 H,isrejected. The company’spremiseisnot correct
.00975
€.05- .10+ 2.58,/.05(.95)/500 U
b. b(10)=Feé 4= F(- 1.85) =033
8 ,/.10(:90)/500 :

¢}
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41.

42.

43.

Chapter 8: Tests of Hypotheses Based on a Single Sample

a. Thealternative of interest hereisHy: p > .50 (which states that more than 50% of all
enthusiasts prefer gut), so the rejection region should consist of large values of X (an
upper-tailed test). Thus (15, 16, 17, 18, 19, 20) isthe appropriate region.

b. a =P(@U5£ X when p =.5) =1-B(14; 20, .05) = .021, so thisisalevel .05 test.

For R={14, 15, ..., 20}, a = .058, so this R does not specify alevel .05 test and the
region of aisthe best level .05 test. (a £ .05 along with smallest possible b).

c. b(:6)=B(14; 20, .6) = .874, and b(:8) = B(14; 20, .8) = .19%.

d. Thebest level .10test isspecified by R = (14, ..., 20} (witha =.052) Since 13isnotin
R, H, isnot rejected at thislevel.

The hypotheses are Hy: p=.10vs. Ha: p> .10, so R hastheform{c, ...,n}. Forn=10,c=3
(i.,e R={3,4,...,10}) yiddsa =1-B(2; 10, .1) =.07 whileno larger R hasa £ .10;
however b(.3) =B(2; 10, .3) =.383. Forn=20,c=5yieldsa =1- B(4; 20, .1) =.043, but
again b(.3) = B(4; 20, .3) =.238. Forn=25, c=5yieldsa =1—B(4; 25, .1) = .098 while
b(.7) = B(4; 25, .3) =.090 £ .10, so n = 25 should be used.

p-.035

4/.0351.9655/ n

Zo1=-2.33. With p = % =.03,z= _—005 =-.61. Because -.6lisn't£-233 H,

+/.0082

isnot rejected. Robots have not demonstrated their superiority.

Ho: p=.035vsH, p<.035. Weuse Z = , with therejection region z £ -

Section 8.4

44,

Using a = .05, H, should be rejected whenever p-value < .05.
a P-vaue=.001<.05, sorgect H,

b. .021<.05, soreject Ho.
c. .078isnot< .05, sodon't regject He.
d. .047<.05,sorgect Hy (aclosecal).

e. .148> .05 s0H, can't beregjected at level .05.
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45.

46.

47.

48.

Chapter 8: Tests of Hypotheses Based on a Single Sample

p-value=.084>.05=a, so don't reject H,.
p-vaue=.003<.001=a, so reject H,.

498 >> .05, so H, can't beregjected at level .05
084 < .10, soreject H, at level .10

.039isnot < .01, sodon't reject H,.

p-value = .218 > .10, so H, cannot be rejected.

In each casethe p-value= 1- F (Z)

a

b.

C.

0778

d. .0066
1841

e. 4562
0250
.0358

d. .1586
.0802

e O
5824

Inthedf = 8row of table A.5, t = 2.0 is between 1.860 and 2.306, so the p-value is
between .025 and .05: .025 < p-value< .05.

2201 <|-24|<2718,50 .01 < p-value < .025.

1341<|-1.6|<1.753,50.05< P(t<-1.6) <.10. Thusatwo-tailed p-value: 2(.05 < P(t
<-1.6) <.10), or .10< p-vaue< .20

With an upper-tailed test and t = -.4, the p-value = P(t > -.4) > .50.
4.032 < t=5<5.893, 50.001 < p-value < .005

3551<|-4.8|, s0 P(t <-4.8) <.0005. A two-tailed p-value = 2[ P(t < -4.8)] < 2(.0005),
or p-vaue< .001.
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50.

51.

52.

53.

Chapter 8: Tests of Hypotheses Based on a Single Sample

An upper-tailed test
a Df=14,a=05 ty,, =1.761:32> 1761, soreject H,,.

b. ty,15 = 2.896; 1.8isnot > 2.896, so don't reject Ho..

c. Df=23 p-vaue> .50, sofail toreect Hy at any significance level.

The p-valueis greater than the level of significance a = .01, therefore fail to reject H, that
I = 5.63. The data does not indicate a difference in average serum receptor concentration

between pregnant women and all other women.

Here we might be concerned with departures above as well as below the specified weight of
5.0, so therelevant hypothesesareHy: M = 5.0 vsH, 1 5.0. Atlevel .01, rgject H,, if

S =035, 2= 32371 whichis
/n 035

£ - 2.58, so H, should be rejected. Because 3.71is*“off” the ztable, p-value < 2(.0002) =
.0004 (.0002 correspondsto z = -3.49).

gither z3 258 or Z £ - 258. Since

a. Fortesting Hy: p=.2VvsHg, p> .2, an upper-tailed test is appropriate. The computed Z is
z=.97,0p-vaue=1- F (.97) =.166. Becausethe p-valueisrather large, H, would

not be rejected at any reasonable a (it can't be rejected for any a < .166), SO ho
modification appears hecessary.

b. Withp=.5,1- b(5)=1- F[- 3+2330516))/.0645 =1- F(- 2.79)=.9974

p = proportion of all physicians that know the generic name for methadone.
Ho: p=.50VsHg p<.50; Wecan use alarge sampletest if both Np, 3 10 and

n(l- p,)?3 10;102(50) = 51, sowe can proceed. P =L so0

102
590 -.039 . , .
=-.79. Wewill rgject Hy if the p-value < .01. For thislower

a [ (50)(50) a 050
102

tailed test, the p-value = F (2) = F (-.79) =.2148, which isnot < .01, so we do not reject Hy at
significance level .01.
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55.

56.

57.

58.

Chapter 8: Tests of Hypotheses Based on a Single Sample

IT = the true average percentage of organic matter in thistype of soil, and the hypotheses are

Ho: M =3 vsHy M1 3. Withn =30, and assuming normality, we use thet test:
_ X-3 _2481-3_ - 519
“s/dn 295 295

=.082. Atsignificancelevel .10, since .082 = .10, we would reject Hp and conclude that the
true average percentage of organic matter in thistype of soil is something other than 3. At
significance level .05, we would not have rejected Hy.

=-1.759. Thep-vaue=2[P(t>1.759)] = 2(.041)

The hypotheses to be tested are Hy: IT = 25 vsHy IT > 25, and H,, should be rejected if
t3 o, =1.782. Thecomputed summary statisticsare X = 27.923, s=15.619, so

S =155 andt = % =1.88. Fromtable A.8, P(t>1.88) " .041, whichis less

n

than .05, so H, isrejected at level .05.

a. Theappropriate hypothesesare Ho: Im =10 vsH, <10

b. P-vaue=P(t>2.3)=.017, whichis= .05, so wewould reject H,. The dataindicates
that the pens do not meet the design specifications.

c. P-vaue=P(t>1.8)=.045, whichisnot=.01, so wewould not reject Hy,. Thereis not
enough evidence to say that the pens don’t satisfy the design specifications.

d. P-vaue=P(t>3.6)".001, which gives strong evidence to support the alternative
hypothesis.

IT = true averagereading, Ho: =70 vsHy 1 70, and
(= X- 70 _755-70 _ 55

Ts/dn 76 286

~2(.058) =.116. At significancelevel .05, there is not enough evidence to conclude that the
spectrophotometer needs recalibrating.

=1.92. Fromtable A.8, df =5, p-value = 2[P(t> 1.92)]

With Ho: i =.60 vsHx 1 .60 ,and atwo-tailed p-value of .0711, wefail to reject H, at

levels .01 and .05 ( thus concluding that the amount of impurities need not be adjusted) , but
wewould reject H, at level .10 (and conclude that the amount of impurities does need
adjusting).
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Chapter 8: Tests of Hypotheses Based on a Single Sample

Section 8.5

59.

60.

& Jnd
a  Theformulafor b is1- F G- 2.33+ —1, which gives.8980 for n= 100, .1049 for
9.4
n =900, and .0014 for n = 2500.

b. Z=-5.3, whichis"off theztable,” so p-value <.0002; thisvalue of z is quite statistically
significant.

c. No. Even when the departure from H,, isinsignificant from apractical point of view, a
statistically significant result is highly likely to appear; the test istoo likely to detect
small departures from H,,

® o b 6
01+.9320/n¢_ ot Onn+o8200 o

4073/n 4073 5
.0944, and 0 for n = 100, 2500, 10,000, 40,000, and 90,000, respectively.

a Heeb =F

b. Heez= .025«/H which equals .25, 1.25, 2.5, and 5 for the four n’s, whence p-value =
4213, .1056, .0062, .0000, respectively.

c. No; thereasoning isthe same asin 54 (c).

Supplementary Exercises

61.

62.

Because n = 50 islarge, we use az test here, rejecting Ho: ™ = 3.2 infavorof Hy 1 3.2
if either 23 Z,s =1.96 or Z£ - 1.96. The computed z valueis

zZ= M =-3.12. Since-3.12is £ - 1.96, H, should be rejected in favor of H,.
34//50

Here we assume that thickness is normally distributed, so that for any n at test is appropriate,

3.2-
and use Table A.17 to determine n. Wewish P (3) =.95 whend = % =.667. By

inspection, n = 20 satisfies this requirement, so n =50 istoo large.
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63.

64.

65.

66.

n
1
2
3

4

Chapter 8: Tests of Hypotheses Based on a Single Sample

Ho: M= 3.2 vsHx 1 32 (Because Hy 1M >32 gives ap-value of roughly .15)

With ap-value of .30, we would reject the null hypothesis at any reasonable significance
level, which includes both .05 and .10.

Ho: = 2150 vsHy > 2150

;= X- 2150
s/«/ﬁ

;= 2160- 2150 _ 10 _ .
30//16 75

Since t 4,5 =1.341, p-value> .10 (actually » .10)

From d, p-value > .05, so H, cannot be rejected at this significance level.

Therelevant hypothesesare Ho: IT = 548 vsH, m1 548. Atleve .05, H, will be
rejected if either t3 t 5,0 =2.228 or t £ -t ., = - 2.228. Thetest statistic

., _587-548 39 _ _ . .
valueist = = =12.9. Thisclearly fallsinto the upper tail of the
10/411  3.02

two-tailed rejection region, so H, should be rejected at level .05, or any other reasonable
level).

The population sampled was normal or approximately normal.

=8,x=30.7875, £ = 6.5300
Parameter of interest: M = true average heat-flux of plotscovered with coal dust
Ho: M =29.0

Ha > 29.0
(= X-29.0
s/~/n
RRt3t, ,ort31.895
{= 30.7875- 29.0 — 7742
6.53/-/8

Fail torgect Hy. The data does not indicate the mean heat-flux for pots covered with
coal dust is greater than for plots covered with grass.
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68.

69.

70.

Chapter 8: Tests of Hypotheses Based on a Single Sample

N =47, X =215 mg, s=235mg. Range5mgto 1,176 mg.

a.  No, thedistribution does not appear to be normal, it appears to be skewed to theright. It
is not necessary to assume normality if the sample size is large enough due to the central
limit theorem. Thissample sizeislarge enough so we can conduct a hypothesis test

about the mean.
b.
1 Parameter of interest: M = true daily caffeine consumption of adult
women.
Ho: =200
Ha: > 200
. , = X- 200
s/+/n
5 RR: 23 1.282 orif p-vaue £.10
215- 200
6 z2=2"""" = 44;pvaue=1- F(44)=.33
235/ /47
7 Fail to regject H,. because .33 > .10. The data does not indicate that daily

consumption of all adult women exceeds 200 mg.

At the .05 significance level, reject H, because .043 < .05. At thelevel .01, fail to regject Hy
because .043 > .01. Thusthe data contradicts the design specification that sprinkler activation
islessthan 25 seconds at the level .05, but not at the .01 level.

a Fromtable A.17,when M =9.5,d=.625,df=9,and b » .60, when m=9.0,d=
125, df=9,and b ».20.

b. FromTableA.17, b =.25,d=.625n» 28

A normality plot reveal s that these observations could have come from anormally distributed
population, therefore at-test is appropriate. Therelevant hypothesesare Hy: IT = 9.75 vs

Ha M > 9.75. Summary statisticsaren =20, X =9.8525, and s = .0965, which leadsto a
9.8525- 9.75

0965/ /20

output). With such asmall p-value, the data strongly supports the alternative hypothesis. The
condition is not met.

test statistic t = = 4.75, from which the p-value = .0001. (From MINITAB
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71.

72.

73.

74.

75.

Chapter 8: Tests of Hypotheses Based on a Single Sample

a. WithHg: p= %5 vsHp:pl %S,W(areject H, if either Z3 1.96 or Z£ - 1.96.
.02- 01333
V4
\/ .01333(.98667)

With p = 16 _ .02 =1.645, whichisnot in either

800

rejection region. Thus, we fail to reject the null hypothesis. Thereis not evidence that
the incidence rate among prisoners differs from that of the adult population. The possible
error we could have madeisatypell.

b. P-vaue= 2[1- F (1645)] = 2[.05] =.10. Yes, since.10 < .20, we could reject H,.

A ttestisappropriate; Ho: M =1.75 isrejected in favor of Hy M1 1.75 if the p-value
1.89- 1.75

42//26
P £€2(.05) =.10 (sincefor atwo-tailed test, .05 =a /2.), do not reject H,; the data does

not contradict prior research. We assume that the population from which the sample was
taken was approximately normally distributed.

>05. Thecomputedtist = =1.70. Since 1.70 &1.708 =t 5 s ,

Even though the underlying distribution may not be normal, a z test can be used becausenis
large. Ho: I = 3200 should be rejected in favor of Hy 11 < 3200 if

3107 - 3200 _

zE£-2,,=-3.08. Thecomputedzis Z=———— =-3.32£ - 3.08, so H,
o0t 188/+/45

should berejected at level .001.

Let p = the true proportion of mechanics who could identify the problem. Then the
appropriate hypotheses are Hy: p=.75vsH, p <.75, so alower-tailed test should be used.

Withpo=.75and p = % =583,z=-328and P=F (— 3.28) =.0005. Because this

p-valueis so small, the data argues strongly against H,, so wereject it in favor of H,,

X-4
WewishtotestHo: | =4 vsHy | >4 usingthetest statistic Z = . For the given
AJ4/n
sample,n=36and X = 160 =4444 0 2= 4444- 4 =1.33. Atlevel .02, wergject
36 4136

Hoif z3 z,, &2.05 (sincel- F (2.05) =.0202). Because 1.33isnot 3 2.05, H,
should not be rejected at thislevel.
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77.

78.

79.

Chapter 8: Tests of Hypotheses Based on a Single Sample

Ho: M =15 vsHy r >15. Because the sample size isless than 40, and we can assume the

distribution is approximately normal, the appropriate statistic is

{= X-15_ 175-15_ 25
s/x/n 2.2/432 390

column of Table A.8, and sois approximately O < .05, so H, isrejected in favor of the
conclusion that the true average time exceeds 15 minutes.

=6.4. Thusthe p-valueis“off the chart” in the 20 df

Ho:S 2 =.25vsHy S 2 >.25. The chi-squared critical value for 9 d.f. that captures

. . o _9(58)° .
upper-tail area.01is21.665. Thetest statistic valueis 2—5 =12.11. Because 12.11is

not 3 21.665, H, cannot be rejected. The uniformity specification is not contradicted.

The 20 df row of Table A.7 showsthat C _59’20 =8.26 <8.58 (H, not rejected at level .01)

and 8.58< 9.591= C 55 ,, (Ho rejected at level .025). Thus .01 < p-value< .025 and H,

cannot beregjected at level .01 (the p-value isthe smallest al pha at which rejection can take
place, and this exceeds .01).

a E(X+2.335)=E(X)+2.33E(S) =m+2.3% ,s0q = X +2.33S is
approximately unbiased.

2 2

b. V(X +2338)=V(X)+2332V(9) =2+ 5.42892—. The estimated
n n
S

n

c. Morethan 99% of al soil samples have pH lessthan 6.75 iff the o5th percentileisless
than 6.75. ThuswewishtotestH,: M+ 2.33 =6.75vs Hy m+ 2.3 <6.75.

standard error (standard deviation) is 1.927

H, will bergjected at level .01if Z £ 2.33. Since Z = 0

385
berejected. The o5t percentile does not appear to exceed 6.75.

< 0, H, clearly cannot
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81.

Chapter 8: Tests of Hypotheses Based on a Single Sample

X,

When H,istrue, 2| SX, = Zé —— has achi-squared distribution with df = 2n. If
m,

the alternativeisHa: M> M, , large test statistic values (large SX , since X islarge)

a.2n givesa

X
suggest that H,, be rejected in favor of H,, so rejecting when 2a —L3 2
m,
test with significancelevel a . If thealternativeisHx M< M, rejecting when
Za - £ 7, , givesalevel A test. Therejection region for Hx M M), iseither

[ Xi

2a E 3 Ca2/2,2n or £ Clz-a/2,2n'

2(737)
75

Ho: M =75 vsHg < 75. Thetest statistic valueis =19.65. Atleve .01,

Ho isrejected if Za m') £ € %950 =8.260. Clearly 19.65isnot inthe rejection

region, so Hy should not be rejected. The sample data does not suggest that true average
lifetimeislessthan the previously claimed value.

P(type| error) = P(either Z3 z, or Z£ z, ) (whenZ isastandard normal rv.) =
F(— za_g)+1- F(zg):a -g+tg=a.

sz,
Jn

b(m)=P(X 3 m)+\/zﬂorX£rnJ-

9 when thetruevalueis nm =

F L L
s/J’g % s/JﬁB

D
Let | :«/—— thenwewmhtoknowwhenp(m) + )
S

ng +

1-Flz-1)
+F(-z.,-1)>1-F(z +1 )+F( z_, +1 )=p(m - D). using the fact
that F (- C):l- F (C),thisinequality becomes
F(Zg +1 )- F(Zg - )> F(Za_g + 1 )- F(Zd_g - ) Thel.h.s. isthe area under
the Z curve above the interval (Zg +l,z, - | ),whilether.h.s. isthe areaabove

(za_g S A ) Bothintervalshave width 2| , but when z, < Z,_, thefirst
interval is closer to O (and thus corresponds to the large area) than isthe second. This

happenswheng >a - g ,i.e,wheng >a /2.
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Chapter 8: Tests of Hypotheses Based on a Single Sample

a a =P(X £ 5 whenp=.9)=B(5; 10, .9) =.002, so theregion (0, 1, ..., 5) does
specify alevel .01 test.

b. Thefirst valueto be placed in the upper-tailed part of atwo tailed region would be 10,
but P(X = 10 when p = .9) = .349, so whenever 10isin therejection region, a 3 .349.

c. Using thetwo-tailed formulafor 3(p’) on p. 341, we calculate the value for the range of
possible p’ values. Thevaluesof p’ we chose, aswell asthe associated 3(p’) arein the
table below, and the sketch follows. R(p’) seemsto be quite large for agreat range of p’

values.
P Beta
0.01 0.0000
0.10 0.0000
0.20 0.0000
0.30 0.0071
0.40 0.0505
0.50 0.1635
0.60 0.35%4
0.70 0.6206
0.80 0.8696
0.90 0.9900
0.99 1.0000
1.0
@
% 05 —
m
0.0 —

| | | | | | | | | | |
00 01 02 03 0.4 05 06 07 08 09 1.0

p prime
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CHAPTER 9

a E()T- V): E()T)- E(V) =4.1- 4.5=- 4, irrespective of sample sizes.

2 2 2 2
s’,s;_ (8 (207 _ 0724, and the s.d.
m n 100 100

of X-Y =+.0724 =.2691.

b. V(X-Y)=v(X)+Vv(Y)=

c. A normal curvewith mean and s.d. asgiveninaandb (becausem=n=100,the CLT

implies that both X and Y have approximately normal distributions, so X -Y does
also). The shapeisnot necessarily that of anormal curve when m = n = 10, because the
CLT cannot beinvoked. Soif the two lifetime population distributions are not normal,

the distribution of X - Y will typically be quite complicated.

%V
The test statistic valueis Z = z—yz'a”d Ho will berejected if either Z 2 1.96 or
i+s_2
m n

42,500- 40,400 _ 2100

45 45
1.96, rgject Hy, and conclude that the two brands differ with respect to true average tread lives.

=4.85. Since4.85>

z£-1.96. Wecompute Z =

» (- y)- 5000 o .
The test statistic valueis Z = T and H, will bergjected at level .01 if
3.3
m n
z3 2.33. Wecompute Z = (43’500- 36’800) - 5000 = 700 =1.76, whichisnot
+
45 45

> 2.33, sowedon't reject H, and conclude that the true average life for radials does not
exceed that for economy brand by more than 500.
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Chapter 9: Inferences Based on Two Samples

From Exercise 2, the C.l. is

2 2
(x- y)+(1.96), /% + %2 = 2100 + 1.96(433.33) = 2100 + 849.33

= (1250.67,2949.33) . Inthe context of this problem situation, the interval is
moderately wide (a consequence of the standard deviations being large), so the
information about 1M and M, is not as precise as might be desirable.

From Exercise 3, the upper bound is

5700+ 1.645(396.93) =5700+652.95 = 6352.95.

Ha says that the average calorie output for sufferersis more than 1 cal/cn’/min below that
2

2 2 2
for nonsufferers. \/S—l + S—Z = \/M + @ =.1414, so
m n 10 10

L= (64- 2.05)- (- 1)

1414
2.90<-2.33, regject Ho.

=-2.90. Atleve .01, H, isrgectedif Z £ - 2.33; since—

P=F(- 2.90) =.0019

- 1.2+18
b=1- F& 2.33- 9-1- F(- .92)=.8212
e 1414 g
2
m=n= '2(2'33+1'28) =65.15, so use 66.

(-2
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(18.12- 16.87)

H, should berejected if Z3 2.33. Since Z = =3.53% 2.33,H,
256, 1.96
40 32
should be rejected at level .01.
1- 0 %
b()=F&.33- =—2=F(- 50)=.3085
& 3539y
256, 196 _ ! ~=.1169 b 190 _ 0520b n=37.06, souse
40 n  (1.645+1.28) n

n=38.

Sincen =32 isnot alarge sample, it would no longer be appropriate to use the large
sampletest. A small samplet procedure should be used (section 9.2), and the appropriate
conclusion would follow.

Parameter of interest: 1M - M, = the true difference of means for males and

females on the Boredom Proneness Rating. Let M = men'saverageand M, =
women’s average.

Hom-m, =0
Hy m - m, >0
Z:(>—<- y)-D, _(x-y)-0

m n m n
RR: 23 1.645

10.40- 9.26)- D

z=(O 0-9 6) =183

4.83° . 4.68°

97 148

Reject Hy. The dataindicates the Boredom Proneness Rating is higher for males
than for females.
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Parameter of interest: M - M, = thetrue difference of mean tensile strength of the
1064 grade and the 1078 grade wirerod. Let M} = 1064 grade average and IT), =
1078 grade average.

Ho: M- m, =-10

Ha m-m <-10

,_(%-3)-D, _(x-)- (10)
m n m n
RR p- value<a

(107.6- 1236)- (-10)_ -6 _ o

13°  20° 210
129 129
For alower-tailed test, the p-value= F (- 28.57) » 0, whichislessthanany a ,

so reject Hy. Thereisvery conpelling evidence that the mean tensile strength of the
1078 grade exceeds that of the 1064 grade by more than 10.

Z=

The requested information can be provided by a 95% confidence interval for Im - M, :

2 2
(x- y)+1.96 %f’_: = (- 6)+1.96(.210) = (- 6.412,- 5.588) .

point estimate X- ¥ =19.9- 13.7 = 6.2. It appearsthat there could be a difference.

(199-137) _ 62

39.1° N 15.82 544

60 60
the p-value = 2[P(z > 1.14)] = 2( .1271) = .2542. Thep valueislarger than any
reasonable a, so we do not reject Hy. There is no significant difference.

Hom-m=0H:m-m?!0,z= =1.14, and

No. With anormal distribution, we would expect most of the data to be within 2 standard
deviations of the mean, and the distribution should be symmetric. 2 sd’s above the mean
is98.1, but the distribution stops at zero on the left. The distribution is positively
skewed.

We will calculate a95% confidence interval for , the true average length of staysfor

patients given the treatment, 10.9+1.960% =19.9+ 9.9 = (10.0,21.8)
/60
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a. ThehypothesesareH,: M - M, =5 and Hy M - M, >5. Atlevel .001, H, should
(65.6- 59.8)- 5

2272
rejected in favor of H, at thislevel, so the use of the high purity steel cannot be justified.

= 2.89 < 3.08, H, cannot be

berejectedif z3 3.08. Since z =

b m-m-D,=1sb=F808- —2=F( 53)=.2801
m - m ¢3.08- —>==F (- 59)
()?- 7)+ Z, iz‘+i Standard error = S Substitution yields
Tae\mt I

(R- 9)£ 2,,,4/(SE)? +(SE,)? . usinga =.05, z,,,=196,%

(5.5- 3.8)+1.96,/(0.3)” +(0.2)* =(0.99,2.41). Becausewe selecteda =.05, we

can state that when using this method with repeated sampling, the interval calculated will
bracket the true difference 95% of thetime. Theinterval isfairly narrow, indicating precision
of the estimate.

2 2
TheCl.is (X- )£ 25 % ¥ %2 =(- 8.77)+ 2.58/.9104 = - 8.7 + 2.46

= (- 11.23,- 6.31). With 99% confidence we may say that the true difference between the
average 7-day and 28-day strengths is between -11.23 and -6.31 N/mn?.

S,=S,=.05d=.04a =.0L, b =.05, and thetest is one-tailed, so

(.0025 +.0025)(2.33 +1.645)°
0016

n= = 49.38, so usen =50.

The appropriate hypothesesare Ho: =0 vs.Hx Q <O,whereq =2m - m,.(q <0 is
equivalent to 2ImM < m,, so normal is more than twice schizo) The estimator of q is

q isthe square root

q=2X - \7,withVar(i):4\/ar()7)+Var(\7):%+%,S

of Var ﬁ) and SAq is obtained by replacing each S iz with SZ . Thetest statistic isthen

A

Si (since 0, =0), and H, isrejected if Z £ - 2.33. With q = 2(2.69)- 6.35= - .97

q

2 2
and S, = \/ 423", (403)° _ 0236, 2=27 = 1.05: Because—1065>-23,
43 45 9236

Ho is not rejected.
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15.
: : m-m-D, .
a. Aseither mornincreases, S decreases, o —————— increases (the numerator is
S
- - D I - - D s
positive), sof?zu1 LS Bl Qdecreases, so b = Fgeza1 (MM 20
e S [} e S [}
decreases.
b. As b decreases, z, increases, andsince z,, isthe numerator of n, nincreases also.
X-y 2
16,  z=——2_=-= Forn=100,z=141adpvae= 2[1- F (1.41)] = 1586
ENERNE
n n n
For n=400, z=2.83 and p-value = .0046. From apractical point of view, the closeness of X
and Y suggeststhat thereis essentially no difference between true average fracture toughness
for type | and type| steels. The very small difference in sample averages has been magnified
by the large sampl e sizes— statistical rather than practical significance. The p-value by itself
would not have conveyed this message.
Section 9.2
17.
+s)
ot 1o 37.21
a N=rT = =17.43» 17
(2f (¢f -694+144
10/ 4 \10
9 9
[£+sf 24,01
b. n= 102 L — = : =21.7»21
(£f (of -694+.411
0/ ,\15
9 14
&+ 7.84
c Nn=—2—2l=__ =18.27 » 18
(zf (zf -o18+411
10/ 4 \i5
9 14
[E+gf 12.84
d n=—2 2 - =" =2605»26
(&) (gf -395+.008
12 + 24
11 23
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WithHe: M - M, =0 vs.Hy M - m, * O, wewill rectH,if p- value<a .
) o e rae)
perf |, )
+
5 4
{ = 22.73- 2195 _ .78

/%42 + % 1265

which isless than most reasonable @ 'S, so wereject H, and conclude that thereisa
difference in the densities of the two brick types.

= 6.8» 6, and thetest statistic

= 6.17 leadsto ap-vaueof 2[ P(t > 6.17)] < 2(.0005) =.001,

115.7- 129.3+10 _ - 36 _

= =-1.20,ax
\/@ 3.007

=90.96, soused.f. = 9. Wewill reject H, if

For the given hypotheses, the test statistic t =

(4.2168 + 4.8241)?
(4.2168)° | (4.8241)°

5 5
t£ -1y, =-2764 since—120>-2.764, wedon't reject Ho.

thed.f.isn =

Wewant a95% confidenceinterval for m - m,. t,,., = 2.262, sotheinterval is
- 3.6+2.262(3.007) = (- 10.40,3.20). Becausethe interval is so wide, it does not

appear that precise information is available.

Let M = thetrue average gap detection threshold for normal subjects, and M, =the

corresponding value for CTS subjects. Therelevant hypothesesare Hy,: M - M, =0 vs.
1.71- 253 - .82

J0351125+ .07569 .3329

Ha M - m, <0, and thetest statistic t = =-246.

(0351125 +.07569)
(0351125)° | (.07569)°

7 9
t£ -t =-2.602. Since-2.46isnot £ - 2.602, wefail to reject H,. We have

insufficient evidence to claim that the true average gap detection threshold for CTS subjects
exceeds that for normal subjects.

Usingd.f.n =

=15.1, or 15, the rejection region is
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22. Let M = thetrue average strength for wire-brushing preparation and let 1M, = the average
strength for hand-chisel preparation. Since we are concerned about any possible difference
between the two means, atwo-sided test is appropriate. Wetest H, :m - m, =0 vs.

H,:m - m 1 O.Weneed the degrees of freedom to find the rejection region:

158 4 402 )?
n = ( 12 12 ) = 2.3%64 =14.33, which we round down to 14, so we
(1.582 )2 (4.012 )2 .0039+.1632
12 + 5
11 11

reject Ho if [t| 3 t y514 = 2.145. Thetest statistic is
19.20- 2313 _ - 393 _
J(&J,&) 1.2442

12 12
conclude that there does appear to be a difference between the two population average

strengths.

- 3.159, whichis £ - 2.145, so wereject H, and

23.
a. Normal plots

Normal Probability Plot for High Quality Fabric Normal Probability Plot for Poor Quality Fabric

999 4

99 1
95 4

80 4
50 1

Probability

20 1

/'/
05 o i

01 1
001 4

Probability
o . . . . . .. i
2ERERB 883 88 8

08 13 1.8 2.3 1.0 15 20 25

Average: L5683 Arderson-Daring Narmality Test g’ge'ag% 235;73500 Amfrson:arllm?g :”ﬂfg% Test
SDev : 044206 A-Squared: 096 pey PVSqI o

N 24 P-Vale: 034 -Vale oo

Using Minitab to generate normal probability plots, we see that both plotsillustrate
sufficient linearity. Therefore, it isplausible that both sasmples have been selected from

normal population distributions.
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Comparative Box Plot for High Quality and Poor Quality Fabric

Poor
Quality

High
Quality ]

T T T
0.5 15 25

extensibility (%)

The comparative boxplot does not suggest a difference between average extensibility for
the two types of fabrics.

c. Wetest Hy:m-m =0vs H, :m - m,* 0. with degrees of freedom

_ (.0433265) _ _ o
=+————=10.5, which we round down to 10, and using significance level
.00017906
.05 (not specified in the problem), we reject Hy if |t| 3t o510 = 2.228. Thetest
statisticis t = -8 =-.38, whichisnot 3 2.228 in absolute value, so we

\/( .0433265)

cannot reject Hy. Thereisinsufficient evidence to claim that the true average
extensibility differs for the two types of fabrics.

A 95% confidenceinterval for the difference between the true firmness of zero-day apples

. . 66° .39
and the true firmness of 20-day applesis (8.74 - 4.96) u P 20 + >0 We

2
266~ N 39° 0
20 20 4
calculate the degrees of freedom N = —— ~~ = 30.83, so we use 30 df, and
=) |, &)
19 19
toos30 = 2.042, sotheinterval is 3.78 £ 2.042(.17142) = (3.43,4.13). Thus, with

95% confidence, we can say that the true average firmness for zero-day apples exceeds that of
20-day apples by between 3.43 and 4.13 N.
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(5-_52 782\
We calcul ate the degrees of freedom N = (2282—122 =53.95, or about 54 (normally
Ay,
28) , \31
27 30

we would round down to 53, but this number isvery close to 54 — of course for thislarge
number of df, using either 53 or 54 won’t make much differencein the critical t value) so the

desired confidence interval is (91.5- 88.3)+1.68,/3% + &
=3.2+2931= (.269,6.131) . Because 0 does not lieinside thisinterval, we can be
reasonably certain that the true difference 1M - M, isnot 0 and, therefore, that the two

population means are not equal. For a95% interval, thet value increases to about 2.01 or so,

which resultsintheinterval 3.2+ 3.506. Sincethisinterval does contain 0, we can no
longer conclude that the means are different if we use a 95% confidence interval.

Let M =thetrue average potential drop for alloy connectionsand let I, = the true average
potential drop for EC connections. Since we areinterested in whether the potential dropis
higher for alloy connections, an upper tailed test is appropriate. Wetest H, :m - m, =0
vs. H, :m - m, > 0. Using the SAS output provided, the test statistic, when assuming
unequal variances, ist = 3.6362, the corresponding df is 37.5, and the p-value for our upper
tailed test would be ¥z (two-tailed p-value) = 5 (.0008) =.0004. Our p-vaue of .0004 is

less than the significance level of .01, so wergject H,. We have sufficient evidenceto claim
that the true average potential drop for alloy connectionsis higher than that for EC
connections.

The approximate degrees of freedom for this estimate are
2
o= (1 +82)  go3sg
(ﬁ)2 (&)2 101.175
6 +\8

5 7
and the desired interval is (40.3- 21.4) + 2.306,/ L% + 8£ =189 + 2.306(5.4674)
=18.9+12.607 = (6.3,31.5) . Because 0 is not contained in thisinterval, thereis strong

evidence that IM - IM,isnot 0; i.e., we can conclude that the population means are not equal.

= 8.83, whichweround downto 8, s0 t o5 ¢ = 2.306

Calculating a confidenceinterval for M, - M would change only the order of subtraction of
the sample means, but the standard error calculation would give the same result as before.
Therefore, the 95% interval estimate of M, - M would be ( -31.5, -6.3), just the negatives of

the endpoints of the original interval. SinceOisnotinthisinterval, we reach exactly the same
conclusion as before; the population means are not equal.
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Wewill test the hypotheses: Hy:m - m, =10 vs. H, :m - m, >10. Thetest
(Xx-y)-10 _ 45

275 4 448 217
A\ 10 5

_leas) 2208

BN
9 4

which is< .10 so wergject Hg and conclude that the true average lean angle for older females
is more than 10 degrees smaller than that of younger females.

statisticis t = = 2.08 The degrees of freedom

= 5.59 » 6 and the p-value from table A.8 is approx .04,

Let M = the true average compression strength for strawberry drink and let IM, = thetrue
average compression strength for cola. A lower tailed test is appropriate. We test
Ho:m-m =0vs H,:m - m, <0. Thetest statisticis

- 14 (44.4) 1971.36
t=——=2 _=.210.n= . = 25.3, souse =25,
J294+15 " " 0.4y L5 778114 o
14 14

Thep-value » P(t <-2.10) =.023. Thisp-valueindicates strong support for the

aternative hypothesis. The data does suggest that the extra carbonation of colaresultsin a
higher average compression strength.

a. Wedesirea99% confidenceinterval. First we calculate the degrees of freedom:

(2.22 432 )2
22° 4 437
n= (2262—2622 =37.24 , which we would round down to 37, except that thereis
22 ) (4.3 )
+

126) 4 \2%6)
26 26
no df =37 row in Table A.5. Using 36 degrees of freedom (amore conservative choice),

toosss = 2.719,andthe 99% C.l. is

(33.4- 42.8)£2.719,/2Z + 4% =-04+2576 = (- 11.98- 6.83). Weare

very confident that the true average load for carbon beams exceeds that for fiberglass
beams by between 6.83 and 11.98 kN.

b. The upper limit of the interval in part a does not give a 99% upper confidence bound.
The 99% upper bound would be - 9.4 + 2.434(.9473) = - 7.09, meaning that the true
average load for carbon beams exceeds that for fiberglass beams by at least 7.09 kN.
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Comparative Box Plot for High Range and Mid Range

470 —

460 —

450 —

440 —

mid range

430 —

420 —

T T
mid range high range

The most notabl e feature of these boxplotsisthe larger amount of variation present in the
mid-range data compared to the high-range data. Otherwise, both |ook reasonably
symmetric with no outliers present.

b.  Using df = 23, a95% confidenceinterval for Mg ange = Mhigh range 1S

(438.3- 437.45)+ 2,069,/ BL + 582 = 85+8.69 = (- 7.849.54). Since

plausible valuesfor My range = Mhign range @€ both positive and negative (i.e., the

interval spans zero) we would conclude that thereis not sufficient evidence to suggest
that the average value for mi d-range and the average value for high-range differ.

Let M = thetrue average proportional stress limit for red oak and let M, = the true average
proportional stress limit for Douglasfir. Wetest Hy :m - m, =1vs. H,:m - m, >1.
(8.48- 6.65)-1_ 1.83

The test statisticist = = 1.818. with degreesof freedom
9% 4 128 +/.2084
1410
2
n= 2('3084) Y =13.85 » 14, the p-value » P(t >1.8) =.046. Thisp-value
&), )
13 9

indicates strong support for the alternative hypothesis since we would reject H, at significance
levels greater than .046. Thereis sufficient evidence to claim that true average proportional
stress limit for red oak exceeds that of Douglas fir by more than 1 MPa.
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Let M =thetrue average weight gain for steroid treatment and let M, = thetrue average
weight gain for the population not treated with steroids. The exercise asksif we can conclude
that IM, exceeds M by more than 5 g., which we can restate in the equivalent form:

M - m, <-5. Therefore, we conduct alower-tailedtestof H,:m - m, =-5 vs.
H, :m - m, <-5. Thetest statisticis

t= ()_(' 7)' (D) - 32.8- 40.5- (‘ 5) Y - 2235 2.2. Theapproximatedf. is

i+i 2.62 . 252 1.2124
m n 8 10
2 2 \2
28 +25 2.1609
n= (28 > 10 nva =14.876, which we round down to 14. The p-value for a
) | )
7 9

lower tailed test isP(t < -2.2) =P(t>2.2)=.022. Sincethisp-valueislarger than the
specified significance level .01, we cannot reject H,. Therefore, this data does not support the
belief that average weight gain for the control group exceedsthat of the steroid group by more
than5g.

a. Following the usual format for most confidence intervals: statistic * (critical
value)(standard error), apooled variance confidence interval for the difference between

io(%. v 141
twomean3|s(x- y)ita/Z,m+n-2 X, 4lm -

b. The sample means and standard deviations of the two samplesare X =13.90,
s, =1.225, y=12.20, s, =1.010. The pooled variance estimate is Sf) =

m-1 ¢ n-1 & 4-1 ¢ 4-1
- 0,2 %2 =& Q12257 + E2" = 010)?
em+n-2g° ém+n-2g° ¢g4+4-2g g4+4-2g
=1.260, so s, =1.1227. Withdf =m+n-1=6for thisinterval, t 5,5 = 2.447 and
the desired interval is (13.90 - 12.20)+ (2.447)(1.1227), /2 + 1

=172£1.943= (- .24,3.64) . Thisinterval contains 0, so it does not support the
conclusion that the two population means are different.

c. Using thetwo-sampletinterval discussed earlier, we use the Cl asfollows: First, we need
2
= 208 6302

to calculate the degrees of freedom. N = 4 =
(1.225Z )2 (ﬁ )2 .0686
+\4

=9.19»9 so

7

3 3

o0 = 2.262 . Thentheinterval is
(13.9- 12.2)+ 2.262; /125 + 102 =170+ 2.262(7938) = (- .10,3.50). This

interval is slightly smaller, but it still supports the same conclusion.
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There are two changes that must be made to the procedure we currently use. First, the
| o= (X-Y)- (D) .
equation used to compute the value of thet test statisticis: t = ~——====" where Spis

1
S, .| —+=

P
m n
defined asin Exercise 34 above. Second, the degrees of freedom=m + n—2. Assuming
equal variancesin the situation from Exercise 33, we calculate s, asfollows:

S = §1g2.6)2+(3’egg2.5)2 = 2544 . Thevalueof thetest statisticis, then,
* \él6g gl6g

(32.8- 405)- (- 5)

1 1

2544 = +—

8 10
valueisP(t<-2.2)=.021. Since.021 > .01, wefail torgect H,. Thisisthe same

conclusion reached in Exercise 33.

t=

=-2.24» - 2.2. Thedegrees of freedom = 16, and the p-

Section 9.3

36.

d =725, s, =11.8628
Parameter of Interest: M, = true average difference of breaking load for fabricin
unabraded or abraded condition.
2 Hy:m, =0
3 H,:m, >0
d-m, _d-o0
s, //n s,/

5 RRt3 tg,, =2.998

4 t

7.25-0
6 =——— =173
11.8628//8
7 Fail torgiect Hy,. The data does not indicate a difference in breaking load for the two

fabric load conditions.
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Thisexercise callsfor paired analysis. First, compute the difference between indoor and
outdoor concentrations of hexavalent chromium for each of the 33 houses. These 33

differences are summarized asfollows: n=33, d = - .4239, s, =.3868, whered =

(indoor value - outdoor value). Then t .., = 2.037, and a 95% confidence interval

for the population mean difference between indoor and outdoor concentration is

- 4239+ (2.037)%8@9 =-.4239+ .13715= (- .5611,- .2868). We can be

V33 5
highly confident, at the 95% confidence level, that the true average concentration of
hexavalent chromium outdoors exceeds the true average concentration indoors by
between .2868 and .5611 nanograms/nt.

A 95% prediction interval for the differencein concentration for the 34™ house is
0 £t (5,17 2 ) = - 4239+ (2.087)(3868,/1+ 5 ) = (- 1.224,.3758).

This prediction interval means that the indoor concentration may exceed the outdoor
concentration by as much as .3758 nanograms/nt and that the outdoor concentration may
exceed the indoor concentration by amuch as 1.224 nanograms/n?, for the 34" house.
Clearly, thisisawide prediction interval, largely because of the amount of variation in

the differences.

The median of the“Normal” datais 46.80 and the upper and lower quartiles are 45.55
and 49.55, which yields an IQR of 49.55— 45.55 = 4.00. The median of the “High” data
i$90.1 and the upper and lower quartiles are 88.55 and 90.95, which yields an IQR of
90.95 - 88.55 = 2.40. The most significant feature of these boxplotsisthe fact that their
locations (medians) are far apart.
Comparative Boxplots
for Normal and High Strength Concrete Mix

e ———

1 ==

T T
High: Normal:
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b. Thisdatais paired because the two measurements are taken for each of 15 test conditions.
Therefore, we have to work with the differences of the two samples. A quantile of the 15
differences shows that the data follows (approximately) a straight line, indicating that it is
reasonabl e to assume that the differences follow anormal distribution. Taking

differencesin the order “Normal” — “High” , wefind d = - 42.23, and S, =4.34.

With t ., = 2.145, a 95% confidenceinterval for the difference between the
population meansis

- 42.23+(2.145 ?ﬁ O 4223+2404= (- 44.63- 39.83). BecauseOiis

S
not contained in thisinterval, we can conclude that the difference between the population
meansisnot O; i.e., we conclude that the two population means are not equal .

a. A normal probability plot showsthat the data could easily follow anormal distribution.

b. Wetest Hy:m, =0vs. H, :m, ' O, withtest statistic

1= d-0 _1672-0 521,27, Thetwo-tailed p-vaueis2[ P(t>2.7)] =

s, /<n  228/14
2[.009] =.018. Since.018<.05, wecanrgect H, . Thereis strong evidence to support
the claim that the true average difference between intake values measured by the two
methodsisnot 0. There is a difference between them.

a Howill bergjected infavor of Hyif either t3 t ., = 2.947 or t £-2.947. The
- .544

summary quantitiesare d = - .544, and Sy =.714,so0t=————=-3.05
Because - 3.05£ - 2.947, H, isrgjected in favor of H,.
2 544
b. s,=731,5,=270,andt = TZ - .57 ,whichisclearly insignificant; the

incorrect analysis yields an inappropriate conclusion.

Wetest Hy:m, =0 vs. H, :m, >0 . withd = 7.600, and s, =4.178,
_ 7.600-5 _ 26

4.178//9 1.39

corresponding p-vaueisP(t>1.9) =.047. Wewould reject H, at any alphalevel greater
than .047. So, at thetypical significancelevel of .05, we would (barely) reject H,, and
conclude that the data indicates that the higher level of illumination yields a decrease of more
than 5 seconds in true average task completion time.

=1.87 » 1.9. With degrees of freedom n—1 =8, the
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Parameter of interest: M), denotes the true average difference of spatial ability in
brothers exposed to DES and brothers not exposed to DES. Let

m = nL(posed - rrlme(posed.
Hyo:m, =0
H,:m, <0
_d-m, _d-o0

s, //n s,/
RR: P-value< .05, df =8
. (12.6-13.7)- 0

0.5
Reject Hy. The data supports the idea that exposure to DES reduces spatial ability.

t

= - 2.2, with corresponding p-value .029 (from Table A.8)

Although thereisa*“jump” in the middle of the Normal Probability plot, the datafollow a
reasonably straight path, so thereis no strong reason for doubting the normality of the

population of differences.

b. A 95% lower confidence bound for the population mean differenceis:

d- tmg‘%%: -38.60- (1.761)%%3: -3860- 10.54=- 49.14.

Therefore, with aconfidence level of 95%, the population mean differenceis above (—
49.14).

c. A 95% upper confidence bound for the corresponding population mean differenceis

38.60+10.54 = 49.14

We need to check the differencesto seeif the assumption of normality isplausible. A
probability chart will validate our use of thet distribution. A 95% confidence interval:

d+ t_%,lsg%@: 2635.63+ (1.753)%%% 2635.63+222.91
nNg a

b (¥,285854)

The differences (white— black) are—7.62, -8.00, -9.09, -6.06, -1.39, -16.07, -8.40, -8.89, and
—2.88, fromwhich d =-7.600, and S; =4.178. The confidence level is not specified in

the problem description; for 95% confidence, t ,,s s = 2.306, andthe C.I. is

- 7.600+ (2.306)§M$: -7.600+3.211=(- 10.811- 4.389).

R

with (%, ;) =(65), (X,, ¥,) =(1514) (%, ¥5) = (10), and (x,, y,) = (21,20),
J =1 and Sy = O (thed;sarel, 1, 1, and 1), whiles; = s, =8.96,s0s, =896 andt =.16.
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Section 9.4

47,

48.

49.

Ho will bergjectedif Z £ - 2, = - 2.33. with p, =.150, and p, =.300,
~ _ 30+80 _ 210

P = 500+600 800
150- .300 - 150 _

= =-4.18. Because - 4.18 £ -2.33,H, is
J(263)(737)(% ++%5) 0359

rejected; the proportion of those who repeat after inducement appears lower than those who
repeat after no inducement.

=.263, and § =.737. The calculated test statistic is

a  Howill berejectedif |2 3 1.96. with P, = 83 - 2100, and P, = = s67,
300 180
- 63+ 75 = 2875 7= 2100 - .4167 _- 2067 __
300 +180 J(2875)(7125)(5; +25) 0427
Since - 4.84£ - 1.96, H, isrejected.
b. P=.275 andS =.0432, so power =
. SF 23(1.96)(.0421)+.2]6 c ab- (1.96)(0421) +.2) 001 _
§ & 0432 g & 0432 :
1- [F(6.54)- F(2.72)] = .9967 .
1 Parameter of interest: p1 — p; = true difference in proportions of those responding to
two different survey covers. Let p; =Pain, p, = Picture.
2 Ho:ip,- p, =0
3 H,:p,- p, <0
4 7= P- P
Jpa(E+3)
5 Reject H, if p-value< .10
o 1910
6 zZ= =-. ; p-vaue = .4247
JERNE o + )
7 Fail to Reject H,. The data does not indicate that plain cover surveys have alower
response rate.
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Leea =.05. A95%confidenceintervalis(f)l- f)z)i' Z, 4/ |22 + P2

o

224\(171) (126 )(140) 5
= (- ) 1.96\/ ?ﬁl(;%) + (26;)65266); =.0934 +.0774 = (.0160,.1708).

a Hgy:p, = p,will bergectedinfavorof H, : p, * p, if either 23 1.645 or

) ) . 011
7£-1645. With p. =.193, and p, =.182. p = .188, z =
P and P2 P 00742

=148

Since 1.48isnot 3 1.645, H, is not rejected and we conclude that no difference exists.

b. Usingformula(9.7) withp; =.2,p,=.18,a =.1, b =.1,and z,,, =1.645,

= (1.645 5.38)1.62) +1.281.16 +.1476
.0004

)2 = 6582

Let p; = true proportion of irradiated bulbs that are marketable; p, = true proportion of
untreated bulbs that are marketable; The hypothesesare H, : p; - P, =0 vs.

’pl - ﬁz 153

— L2 with p, = = = .850, and
(AL +1) 180

s MO o s 22 . 850- 661 189,

P =180 7 P T 360 - |J(756)(244)( % + &) 045

Thep-value= 1- F (4.2) » 0, soreject H, at any reasonable level. Radiation appearsto be
beneficial.

Hy Py - P, >0. Thetest statisticis z =

a. A 95% large sample confidence interval formulafor In(q) is

~ m-xX n-y ) )
Inig )+ Z + . Taking the antilogs of the upper and lower bounds
mx ny

givesthe confidence interval for q itself.

189

b. q =22 =1818, Inlg)=.598, and the standard deviation s

11,037
10,845 10,933
! ’ =.1213, In(g) i
\/ (11032)(189) * (11.037){04) sotheC for Ing) i
598+ 1.96(. 1213) = (.360,.836) . Then taking the antilogs of the two bounds gives
the Cl for q to be (1.43,2.31).
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54,

a  The“after” success probability isp; + p3 while the “before” probability isp; + p2, sop; +
p3 > p1 + P2 becomesps >py; thuswewishtotest H, : p; = p, versus
H,:ps> P,

X, + X, )- (X, + X X,- X
b. Theestimator of (p1+p3)—(pl+p2)is( L 3) ( L 2) =3 72
n n
- X s +
c. WhenH,istrue, p2=p3,SOVarg 3 29= P, * Ps , Which is estimated by
e n g n
Xs' Xz
D, +p T h X.- X
u. The Z statistic isthen — n — = 3 2.
n \/pz"'ps «/Xz"'xs
n
200- 150
d. Thecomputedvalueof Zis —————==2.68,s0 P=1- F (2.68) =.0037. At
/200+150
level .01, H, can berejected but at level .001 H, would not be rejected.
. 15+7 " 29
55. p, =———=.550, p, = o =.690, and the 95% C.I. is

(.550- .690)+1.96(.106) = - .14+ .21= (- .35,.07).

56. Usingpi =1 =p>.=02=.5 L = 2(1.96) é‘eé + EQ = 27119 , S0 L=.1requires n=769.
\én ng  n

Section 9.5

57.
a FromTableA.9, column5,row 8, Fy ;5 = 3.69.

b. Fromcolumn8,row5, Fy 55 =4.82.
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Foi00 == =——=;=.212.

Fossa = 6.16, 50 P(F £ 6.16) =.95.

Since F.99,10,5 = % =.177,

P(177£F £ 4.%4) =P(F £4.74)- P(F £.177) =.95- .01=.94.

Since the given f value of 4.75 falls between F 5,0 =3.33 and F, 5,, = 5.64, we
can say that the upper-tailed p-valueis between .01 and .05.

Sincethe given f of 2.00islessthan F,5,, = 2.52, the p-value>.10.

The two tailed p-value = 2P(F 3 5.64) = 2(.01) =.02.

For alower tailed test, we must first use formula 9.9 to find the critical values:

1 1
F.90,5,10 = F— = 30301 F-955,10 = F— = 2110,
.1010,5 05,105
1
Foos10 = =.0995. Since .0995<f=.200<.2110, .01 < p-vaue< .05 (but
.01,10,5

obviously closer to .05).
Thereisno column for numerator d.f. of 35in Table A.9, however looking at both df =

30 and df = 40 columns, we see that for denominator df = 20, our f value is between F o,
and Fgo;. Sowe cansay .001< p-value<.01.
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Wetest H, S f =s 22 vs. H, :512 s 22 The calculated test statistic is
(2.75)
(4.44)
1=5-1=4,werdectHoif f 3 F,, =6.00 or

fE£Fge,= }{:.05’4’9 = %.63: 275 . Since 384 isin neither rejection region, we do

not reject Hp and conclude that thereis no significant difference between the two standard
deviations.

f = = .384 . With numerator d.f.=m —1=10—1 =9, and denominator d.f. = n—

With S | = true standard deviation for not-fused specimensand S , = true standard

deviation for fused specimens, wetest H, 1S, =S , vs. H, :S; >S ,. Thecalculated

2
—ggggz =1.814. with numerator d.f.=m—-1=10-1=9, and

denominator d.f. =n-1=8-1=7, f =1.814<2.72=F 4. Wecan say that the p-

value > .10, whichisobviously > .01, so we cannot reject H,. Thereisnot sufficient
evidence that the standard deviation of the strength distribution for fused specimensis smaller
than that of not-fused specimens.

test statisticis f =

LetsS 12 = variancein weight gain for low-dose treatment, and S 22 = variancein weight

gain for control condition. Wewishtotest H, :S > =s Zvs. H_ :S? >S 2. Thetest
2

statistic is f =—Slz ,and wereject H, at level .05if f >F . ,,, » 2.08.
52 19,
f= (32)2 =2.853 20.8, sorgject H,, at level .05. The data does suggest that there is

more variability in the low-dose weight gains.

H,:s, =s , will berejectedinfavorof H, :S, 1 s, ifeither f £ Fq,,,, » .56

orif f3 Foeru »1.8. Because f =1.22 H,isnotrejected. The datadoes not
suggest adifferencein the two variances.

282



Chapter 9: Inferences Based on Two Samples

& S*ls? 0 . L
63. PgFl-a/Z,m-Ln-l £ —=——EtF ,nin12=1-a . Thesetof inequalitiesinsidethe
S;ls; {7/

2 2 2
S Fl»alz,m—l,n—l £ S, £ S Fa/z,m-l,n-l

2 2 2
Sl

parenthesesis clearly equivalent to . Substituting

2
S
the sample values 512 and 522 yields the confidence interval for —22 , and taking the square
S 1

S
root of each endpoint yields the confidence interval for 2  m=n=4,soweneed

S

1
Fosss =9.28 and F g5 ; =——=.108. Thenwiths; =.160and s, =.074, the C. I.

9.28

sy s,
for —2-is(.023, 1.99), and for —= is(.15, 1.41).
S 1 S 1

2F 2
64. A 95% upper bound for 52 is > '025'9'9 = (3'59) (3'18) =8.10. Weare
s, | ¢ (79)

confident that the ratio of the standard deviation of triacetate porosity distribution to that of
the cotton porosity distribution is at most 8.10.

Supplementary Exercises

65. Wetest Hy:m-m, =0 vs. H, :m - m,* 0. Thetest statisticis
t:(x-y)-(D)_ 807- 757 _ 50 50

= = =3.22. Theapproximate d.f. is
\/ ¢ ¢ \/272 412 +[241 15524
— 4= 10 +—

m n 10
_ (242)? _ .
n= > -~ = 15.6, which we round down to 15. The p-value for atwo-
(729) |, (168.9)
9 9

tailed test is approximately 2P( t > 3.22) = 2(.003) =.006. Thissmall of ap-value gives
strong support for the alternative hypothesis. The dataindicates asignificant difference.
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Comparative Boxplot of Tree Density Between
Fertilizer Plots and Control Plots

1400 —

1300 —

1200 —

Fertiliz

1100 —

1000 —

T T
Fertiliz Control

Although the median of the fertilizer plot is higher than that of the control plots, the
fertilizer plot data appears negatively skewed, while the opposite istrue for the control
plot data.

b. Atestof Hy:m-m, =0 vs. H, :m - m, * Oyieldsat value of -.20, and atwo-

tailed p-value of .85. (d.f. = 13). Wewould fail to reject Hy; the data does not indicate a
significant difference in the means.

c. With 95% confidence we can say that the true average difference between the tree density
of the fertilizer plots and that of the control plotsis somewhere between—144 and 120.
Sincethisinterval contains 0, 0 isaplausible value for the difference, which further
supports the conclusion based on the p-value.

Let p; = true proportion of returned questionnaires that included no incentive; p, = true

proportion of returned questionnaires that included an incentive. The hypotheses are

Ho:pi- P, =0vs Hy:p, - p, <O. Thetest statisticis z:%.
|/ +3)

p, = LR 682, and P, =% =.673. At thispoint wenoticethat since P, > p,, the

110
numerator of the z statistic will be > 0, and since we have alower tailed test, the p-value will
be>.5. Wefail torgect H,. This data does not suggest that including an incentive increases
the likelihood of aresponse.
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Summary quantitiesarem =24, X =103.66,s;=374,n=11, y =101.11,s, =360. We
use the pooled t interval based on 24 + 11 — 2 = 33 d.f.; 95% confidence requires

t 00533 = 2.03. With S =13.68 and s, =3.70, the confidence interval is

2,55+ (2.03)(3.70),/% + 4 = 255+ 2.73 = (- .18,5.28). Weare confident that the

difference between true average dry densities for the two sampling methods is between -.18
and 5.28. Becausetheinterval contains O, we cannot say that there isasignificant difference
between them.

The center of any confidenceinterval for M - mMyisaways X; - X,, so

_ _ -473.3+1691.9 ) . .
X - X, = > = 609.3. Furthermore, half of the width of thisinterval is

1 2

1691.9- (_ 473'3) =1082.6 . Equating thisvalueto the expression on the right of the

2

95% confidence interval formula, 1082.6 = (1 96) Sl —2 we find
n.n
S s; 10826
—+—= =———=05b52.35. Fora90% interval, the associated z valueis 1.645, so

n n, 1.96
the 90% confidenceinterval isthen 609.3 + (1.645)(552.35) =609.3+908.6
= (- 299.31517.9).

a. A 95% lower confidence bound for the true average strength of joints with a side coating

isi-t_0259§}g—6323 1833§J9_6; 63.23- 3.45=50.78. Thatis,

with a confidence level of 95%, the average strength of joints with a side coating is at
least 59.78 (Note: thisbound isvalid only if the distribution of joint strength isnormal.)

b. A 95% lower prediction bound for the strength of asinglejoint with aside coating is
X - togso(Sy1+ %)= 63.23- (1.833)[5.96,/1+ 5 ) = 63.23- 11.46 = 51.77.

That is, with a confidence level of 95%, the strength of asingle joint with a side coating
would be at least 51.77.

c. Foraconfidencelevel of 95%, atwo-sided tolerance interval for capturing at least 95%
of the strength values of joints with side coating is X % (tolerance critical value)s. The

tolerance critical valueis obtained from Table A.6 with 95% confidence, k = 95%, and n
=10. Thus, theinterva is

63.23+ (3.379)(5.96) = 63.23+ 20.14 = (43.09,83.37). That is, we can be

highly confident that at least 95% of all joints with side coatings have strength values
between 43.09 and 83.37.
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d. A 95% confidenceinterval for the difference between the true average strengths for the

(9.59) | (5.96)°

two types of jointsis (80.95 - 63.23) il \/

. The
10 10
(919681 + 355216)2
approximate degrees of freedomisn = (91.96;01)2 (;2.5216)2 =15.05, soweuse 15
10 + 110
9 9

df., and t o,5,5 = 2.131. Theinterval is, then,
17.72+(2.131)(3.57) = 17.72+ 7.61= (10.11,25.33) . With 95% confidence, we

can say that the true average strength for joints without side coating exceeds that of joints
with side coating by between 10.11 and 25.33 Ib-in./in.

m=n =40, X =3975.0,s,=245.1, § = 2795.0, s, =293.7. Thelarge sample 99%

245.1° 2937 2
40 40
(1180.0) +1560.5 » (1024,1336) . ThevalueOis not contained in thisinterval sowe can

state that, with very high confidence, the value of IM - M, isnot 0, which is equivalent to
concluding that the population means are not equal.

confidenceinterval for m - m, is (3975.0- 2795.0)i 2.58\/

Thisexercise callsfor apaired analysis. First compute the difference between the amount of
cone penetration for commutator and pinion bearings for each of the 17 motors. These 17

differences are summarized asfollows: n=17, d =-4.18, s, = 35.85, whered =
(commutator value— pinion value). Then t,s,q = 2.120, and the 95% confidenceinterval

for the population mean difference between penetration for the commutator armature bearing
and penetration for the pinion bearing is:

- 4.18+(2.120 ??5% -4.18+18.43= (- 22.61,14.25). Wewould haveto say

that the population mean difference has not been precisely estimated. The bound on the error
of estimation is quite large. In addition, the confidence interval spans zero. Because of this,
we haveinsufficient evidence to claim that the population mean penetration differsfor the
two types of bearings.
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Since we can assume that the distributions from which the samples were taken are normal, we
usethetwo-samplet test. Let M denote the true mean headability rating for aluminum killed

steel specimens and I, denote the true mean headability rating for silicon killed steel. Then
the hypothesesare Hy:m - m, =0vs. H, :m - m, 1 0. Thetest statisticis

- .66 - .66 .
t= = = - 2.25. Theapproximate degrees of freedom
./03888+.047203  /.086083
2
n= ('0286083) > =57.5, soweuse57. Thetwo-tailed p-value
(.03888)° , (:047203)
29 29

» 2(. 014) =.028, which isless than the specified significance level, so we would reject H,.
The data supports the article’ s authors' claim.

Let M denote the true average tear length for Brand A and let M, denote the true average
tear length for Brand B. Therelevant hypothesesare H, : M - m, =0 vs.

H_, :m - m, > 0. Assuming both populations have normal distributions, the two-sample t
test is appropriate. m=16, X = 74.0,s,=148,n=14, Yy =61.0,s, =125, s0the

(14.8Z 1252 )2

approximate df. isn = -2 14 = 27.97 , which we round down to 27. Thetest
(14.82)2 (1252)2
16 + 14
15 13
o 74.0- 61.0
statisticis t = ——— » 2.6. From Table A.7, the p-value= P(t> 2.6) =.007. Ata
148 4 125
16 14

significance level of .05, H, is rejected and we conclude that the average tear length for Brand
A islarger than that of Brand B.

a  Therelevant hypothesesare Hy :m - m, =0vs. H, :m - m * 0. Assuming

both populations have normal distributions, the two-samplet test is appropriate. m=11,
X=98.1,s,=142,n=15 Y =129.2,s,=39.1. The test statisticis

- 311 - 311 .
t= = = - 2.84. The approximate degrees of
\/18.3309+101.9207 +/120.252
2
freedomn = (1§0'252) > =18.64, soweuse 18. From Table A7,
(18.3309)° , (101.9207)
10 14

the two-tailed p-value » 2(. 006) =.012. No, obviously, the results are different.
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b. Forthehypotheses Hy :m - m, =-25vs. H, :m - m, <-25, thetest statistic

M = - .556. With degrees of freedom 18, the p-value
120.252 T |

» P(t <- .6) =.278. Sincethe p-valueis greater than any sensible choice of a , we

fail torgject H,. Thereisinsufficient evidence that the true average strength for males
exceeds that for females by more than 25N.

changesto t =

a. Therelevant hypothesesare H , : rq - mz = 0 (which is equivalent to saying

m-m,=0)versus H, :m - m, 1 O (whichisthe sameassaying

m - m, * 0). Thepooledttestishasedond.f.=m+n-2=8+9-2=15. The
m_ 1 e n_ 1 .

pooled variance is Sf) = (i:;e 0 : +¢% 9522

em+n- 2g em+n- 2g

281 duop+ @1 9461222249 w05, = 4742, Thetest statistic
€8+9- 2g €8+9- 2g

X*-y* _ 18.0-11.0
S,E+i 4742 [1+1
associated witht = 3.0is2P(t>3.0) = 2(.004) = .008. Atsignificancelevel .05, H, is
rejected and we conclude that there is a difference between m_ and mz , Whichis

ist= =3.04 » 3.0. From TableA.7, thep-value

equivalent to saying that there is a difference between M and M, .

b. No. Themean of alognormal distributionis m= e"f +(S*)2/2 , Where m andS  are
the parameters of the lognormal distribution (i.e., the mean and standard deviation of
In(x)). Sowhensl* =S ;,then m_ = m2 would imply that M = M,. However,
when SI s 2 , then even if n1 = n12 the two means 1M, and 1M, (given by the
formula above) would not be equal .

Thisis paired data, so the paired t test isemployed. Therelevant hypotheses are
Ho:m, =0 vs. H, :m, <O, where IM, denotes the difference between the population

average control strength minus the population average heated strength. The observed
differences (control — heated) are: -.06, .01, -.02, 0, and-.05. The sample mean and standard

deviation of the differencesare d = - .024 and s, =.0305. Thetest statistic is
- .024
t —

.oso/yJE
value associated witht =-1.8isP(t<-1.8) = P(t>1.8) =.073. Atsignificancelevel .05, H,

should not be rejected. Therefore, this data does not show that the heated average strength
exceeds the average strength for the control population.

=-1.76» - 1.8. From Table A.7, withd.f. =5—1 = 4, the lower tailed p-
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Poor Visibility

Let M denote the true average ratio for young men and I}, denote the true average ratio for
elderly men. Assuming both populations from which these samples were taken are normally
distributed, the relevant hypothesesare Hy :m - m, =0vs. H, :m - m, >0. The

747- 6.71
value of thetest statisticis t = ( - )2 =7.5. Thed.f.= 20 and the p-valueis
(22 (28
J A T G
13 12

P(t>75) » 0. Sincethep-valueis <a =.05, wergect H,. We have sufficient evidence
to claim that the true average ratio for young men exceeds that for elderly men.

1.5 —

Good Visbility

0.5 - . @

Normal Score
Nomal Score

A normal probability plot indicates the data for good visibility does not follow a normal
distribution, thus at-test is not appropriate for this small asample size.

The relevant hypotheses would be 1M, = M versus M, * M. for both the distress and
delight indices. Thereported p-value for the test of mean differences on the distressindex
waslessthan 0.001. Thisindicates astatistically significant differencein the mean scores,
with the mean score for women being higher. The reported p-value for the test of mean
differences on the delight index was > 0.05. Thisindicatesalack of statistical significancein
the difference of delight index scoresfor men and women.
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Wewishtotest Ho: M =M, versusHxz M 1 m,

Unpooled:
WithHe: M - M, =0 vs.Hy M - m, * O, wewill rectH,if p- value<a .
(E + 1522)2
n =22 =1595% 16, and the test statistic
L)
14 + 12
13 11

,_848-936 - .96
- JE s 4869

14 12

» 2(.031) » .062

Pooled:

=-1.97 leadsto ap-vaueof 2[ P(t > 1.97)]

Thedegreesof freedomn =m=n- 2=14+12- 2 =24 and the pooled variance

isaéE(.—:j(Jg)2 + ¢‘é'_19(1_52)2 =1.3970,s0 S, =1.181. Thetest statisticis
e24 g e24 g
a - .96 _-.96
t= = » - 2.1. Thep-vaue=2[ P(ty, >2.1)] =2(.023) = .046.
1.18L /% +& 465

With the pooled method, there are more degrees of freedom, and the p-value is smaller than
with the unpooled method.

Because of the nature of the data, we will use apaired t test. We obtain the differences by
subtracting intake value from expenditure value. We are testing the hypotheses Ho: pg = 0 vs

o 1.757 _
Ha hg ?0. Test statistic t = ———— = 3.88 with df = n—1=6leadsto ap-vaueof 2[ P(t>

1.197‘17
3.88) 7 .004. Using either significance level .05 or .01, we would reject the null hypothesis
and conclude that there is a difference between average intake and expenditure. However, at
significance level .001, we would not reject.

a.  With n denoting the second sample size, thefirstism = 3n. Wethen wish

/900 400
20= 2(2.58) ey + - , Whichyieldsn =47, m = 141.

, , L 900 400 ,
b. Wewishtofind the n which minimizes Z(Zd,z) ———— +——, or equivalently, the
400-n n
L 900 400 _ o
n which minimizes 00 + —— . Taking the derivative with respect to n and
-n n

equating to 0 yields 900(400- n)? - 400n"2 =0, whence 9n? = 4(400- n)*, or
5n? +3200n - 640,000 = 0. Thisyieldsn = 160, m =400 — n = 240.

290



Chapter 9: Inferences Based on Two Samples

84. Let p; = truesurvival rateat 11°C ; p, = true survival rateat 30°C ; The hypotheses are
ﬁl B ﬁz
. 713 102 ~ 175

= °-802 and P, =—==.927, p=—"=.871,G=.129 .
P1= 91 P2 =110 P= %01 9

Ho:Pi- P, =0vs H,:p,- p,t 0. Thetest statisticis Z = . With

_ .802- .927 _-.125
J(872)(129)(& + &) 0320

F (- 3.91) <F (- 3.49) =.0003, so reject H, at any reasonable level. The two survival
rates appear to differ.

=-3.91. Thep-value=

85.
a Wetest Hy:m-m =0vs H, :m - m,* 0. Assuming both populations have

normal distributions, the two-samplet test is appropriate. The approximate degrees of
(.042721)°

(0325125)°  (.0102083)°
7 11
tooos1r = 4437, sowergject Hoif t3 4.437 or t £ - 4.437 Thetest statisticis
.68

t = —— » 3.3, whichisnot 3 4.437, so we cannot reject H,. At significance
042721

level .001, the data does not indicate adifferencein true average insulin-binding capacity

dueto the dosage level.

freedomn =

=11.4, soweusedf = 11.

b. P-vaue=2P(t>3.3)=2(.004) = .008 whichis> .00L.

86 $2 = |_(n1‘ 1)812"'(”2 B 1)522 +(n3' 1)332 +(n4 B 1)821
. nl+n2+n3+n4'4
E(S"Z): |_(ni' 1)512"'(“2' 1)522"'(”3' 1)S§+(n4' 1)5 EJ:S 2
n+n,+n;+n,- 4

the given datais = [15(.4096) + 17(.6561)54(; 7(.2601) +11(.1225)]

. The estimate for

=.409
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90.

Chapter 9: Inferences Based on Two Samples

& o)
D, =05, =5, =10.de15 = |20 WM & o 9
V'n n ? 14.142

giving b = .9015, .8264, .0294, and .0000 for n = 25, 100, 2500, and 10,000 respectively. If

the M'S referred to true average | Q' s resulting from two different conditions, m - m, =1

would have little practical significance, yet very large sample sizeswould yield statistical
significance in this situation.

Hy:m- m =0istestedagainst H, :m - m, 1 O usingthetwo-samplet test,
rejecting H, at level .05if either t 3 t . o = 2.131 orif t £ - 2.131. with X =11.20,

§=268,Y=9.79,s, =321, andm=n=8,s,=296,andt=.95,s0 H, is not

rejected. In the situation described, the effect of carpeting would be mixed up with any

effects due to the different types of hospitals, so no separate assessment could be made. The
experiment should have been designed so that a separate assessment could be obtained (e.g., a
randomized block design).

Hy 1 p; = P, will berejected at level @ infavorof H, 1 p, > P, if either
z3 z,,=1.645. with p, =22 =10, p, = 2% =.0668, and p =.0834,

2500 2500
.0332 . . : .
z=———=4.2,s0H,isrejected . It appearsthat aresponseismore likely for awhite

.0079
name than for ablack name.

_ 34- 46 ,
The computed value of Z is Z=—————= =-1.34. A lower tailed test would be
34+ 46
appropriate, so the p-value = F (- 1.34) =.0901> .05, so we would not judge the drug to

be effective.
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a Let m and M, denote the true average weights for operations 1 and 2, respectively. The

relevant hypothesesare H, :m - m, =0vs. H, :m - m, 1 0. Thevaueof the
test statistic is

_ (1402.24- 1419.63) _ - 17.39 __ 1739 _ g
\/ (10.97)° , (9.96)° © \/4011363+3.30672 /7.318083 '
30 30
Thedf.n = (7.318083) =57.5,sousedf = 57. t e o, » 2.000,
(4.011363)* | (3.30672)° '
29 29

so we can reject H,, at level .05. The dataindicatesthat thereisasignificant difference
between the true mean weights of the packages for the two operations.

b. H,:m =1400 will betested against H, : m >1400 using aone-sample't test

_ o X-1400 _ _
with test statistic t = —————. With degrees of freedom = 29, wereject H,, if

e

1402.24- 1400 2.24
t> 1,0 =1.699. Thetest statistic valueist = - —

w09~ 200

Because 1.1 < 1.699, H, is not rejected. True average weight does not appear to exceed
1400.

~ —_ A —_ ~ _+ V2
o m n m+n
X-Y
Z= . With X =1.616 and Y = 2.557 ,z=-5.3 and p-value =
Lyl

Z(F (- 5.3))< .0006 , so we would certainly reject Hy @1, =1, infavor of
Hyo:1,t1

a

N

~ ~

- I
|, =xX=1.62, I =y =256, P F =1.77, and the confidence interval is

- .94+ (1.96)(1.77) =- .94+.35 = (- 1.29,- .59)
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CHAPTER 10

Section 10.1

a Howill bergjectedif f 3 Fyg,,5 =3.06 (sincel —-1=4,and| (J-1)=(5)3) = 15).
MSTr _ 26733

MSE 1094.2
3 3.06, H, isnot rejected. The data does not indicate a difference in the mean tensile
strengths of the different types of copper wires.

= 2.44. Since2.44 isnot

The computed value of Fis f =

b. Fgsa15 =3.06 and Fy,,5 = 2.36, and our computed value of 2.44 is between those
values, it can be said that .05 < p-value<.10.

2.
Type of Box X s
1 713.00 46.55
2 756.93 40.34
3 698.07 37.20
4 682.02 39.87

Grand mean = 712.51

MSTr = 411 (713.00- 712.51)% +(756.93- 712.51)* +(698.07 - 712.51)*

+(682.02- 712.51)? | =6,223.0604
MSE = %[(46.55)2 +(40.34)% +(37.20)*+ (39.87)2] =1,691.9188
_ MSTr _ 6,223.0604 _

= = =3.678
MSE 1,691.9188
Fos320 =3-10
3.678>3.10, soreject H,. Thereisadifferencein compression strengths among the four box

types.
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With M = true average lumen output for brand i bulbs, we wish to test
Ho:m =m, =m, versus H, : at least two M'S are unequal.

591.2 4773.3

MSTr =§ ¢ = === = 295,60, MSE =5, = = 227.30, 0

_ MSTr _ 295.60

MSE 227.30
2and | (J-1) =21 Inthe 2" row and 21% column of Table A.9, we see that

1.30< F,y,, =2.57,sothep-value>.10. Since.10isnot < .05, we cannot reject H.

=1.30 For finding the p-value, we need degrees of freedom | — 1=

There are no differences in the average lumen outputs among the three brands of bulbs.

(166.08)*

x_ =1Jx. =32(5.19)=166.08, so SST =911.91- = 49.95.

SSTr =8|(4.39- 5.19) +... +(6.36 - 5.19)?|=20.38, s0

SSE = 49.95- 20.38= 29.57. Then f = % = 6.43. Since
7/28

6.433% Fs,,5 =295, Hy:m =m, =m, =m, isrejected at level .05. Thereare
differences between at least two average flight times for the four treatments.

M = true mean modulus of elasticity for gradei (i=1,2,3). Wetest Hy:m =m, =m,
vs. H, [ atleasttwo M'S areunequal. RejectH,if f 3 F, ,,, =5.49. Thegrand
mean = 1.5367,

MSTr = 1—;)[(1.63- 1.5367)° +(1.56 - 1.5367)" + (1.42- 1.5367)2] =.1143

MSE = 1[(.27)2 +(.24)” +(.26)* | =.0660, f - MSTr _ 1143 1 73, Failto
3 MSE  .0660
reject Ho. Thethree grades do not appear to differ.
Source Df SS MS F
Treatments 3 509.112 169.707 10.85
Error 36 563.134 15.643

Total 39 1,072.256

Foisas » Foiss0 = 4-51. Thecomputed test statistic value of 10.85 exceeds 4.51, so
reject Hy in favor of Hy: at least two of the four means differ.
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Source Df SS MS F
Treatments 3 75,081.72 25,027.24 1.70
Error 16 235419.04 14,713.69

Total 19 310,500.76

Thehypothesesare Hy:m =m, =m, =m, vs. H_ : atleasttwo IM'S areunequal.
1.70<F 43,6 = 2.46, s0p-value> .10, and wefail to reject Ho,

The summary quantitiesare X, = 2332.5, X, =2576.4, X, =2625.9,
X, =2851.5, x, =3060.2, X =13446.5, so CF = 516595321, SST = 75467.58,

SSTr = 43,992.55, SSE = 31,475.03, MSTT = % =10,998.14,
MSE = 3147503 =1049.17 and f = % =10.48. (These values should be

displayed inan ANOVA table asrequested.) Since 10.483 F, ,,, =4.02,

Ho:m =m,=m, =m, =m isrejected. Therearedifferencesin the true average axal
stiffness for the different plate lengths.

The summary quantitiesare X, =34.3, X,. =396, X, =33.0, x, =419,

2
X, =148.8, SSx; =946.68, so CF = @ =922.56,

SST =946.68 - 922.56 = 24.12,
(34.3) +...+(42.9)

SSTr = 5 - 92256 =8.98, S8 E =24.12- 8.98=15.14.
Source Df SS MS F
Treatments 3 8.98 2.9 3.95
Error 20 1514 757
Total 23 24.12

Since 3.10 = F.05,3,zo <395<4.94= F.01,3,201 01l< p- value<.05 andH,is
rejected at level .05.
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10.

o ) ER) s
2
b E(X?)=var(X, )+[E(X, J} =2+ o7
2
c. E()T_Z) Var( ) [E()_(__)]2 :F+m2
0. E(ssTr)=Epsx?- 1x2]=08 552 s* 9
: i = é +m = glJ e -
=1s 2+ JSmP-s2- 1M =(1 - s 2+I5(m - M, so
E(MSTr) = (|SST E[osx? - 102 |=s 2+ 0§ M
e. WhenH,istrue, M =...=M =M, so S(m - m)2 =0 and E(MSI'I’)ZS 2,
When H, isfalse, S(m - m)2 >0, so E(I\/ISI'I‘)>S Z (on average, MSTY
overestimates S 2).
Section 10.2
11. Qos 515 =437, w= 4374? =36.09.
3 1 4 2 5
4375 462.0 469.3 512.8 5321

The brands seem to divide into two groups: 1, 3, and 4; and 2 and 5; with no significant
differenceswithin each group but all between group differences are significant.
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12.
3 1 4 2 5
4375 462.0 469.3 512.8 5321
Brands 2 and 5 do not differ significantly from one another, but both differ significantly from
brands 1, 3, and 4. Whilebrands 3 and 4 do differ significantly, there is not enough evident
toindicate asignificant difference between 1 and 3 or 1 and 4.
13.

3 1 4 2 5
4275 462.0 469.3 502.8 5321

Brand 1 does not differ significantly from 3 or 4, 2 does not differ significantly from 4 or 5, 3
does not differ significantly from1, 4 does not differ significantly from 1 or 2, 5 does not
differ significantly from 2, but all other differences (e.g., 1 with 2 and 5, 2 with 3, etc.) do
appear to be significant.

1.06
14, 124,028 50 Qg5 » 3.87, W= 3.87, /7 =1.41.

4.39 452 549 6.36

Treatment 4 appearsto differ significantly from both 1 and 2, but there are no other
significant differences.

,15.64
15. Qorazs =475, W=4.75 1—0 =5.94.

2 1 3 4
24.69 26.08 29.95 33.84

Treatment 4 appearsto differ significantly from both 1 and 2, but there are no other
significant differences.
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16.
a. Sincethelargest standard deviation (s4 = 44.51) isonly slightly more than twicethe
smallest (s3 = 20.83) it isplausible that the population variances are equal (seetext p.
406).

b. Therelevant hypothesesare Hy:m =m, =m, =m, =m, vs. H, :at least two

m's differ. Withthe given f of 10.48 and associated p-value of 0.000, we can reject H,
and conclude that thereisa difference in axial stiffness for the different plate lengths.

4 6 8 10 12
33321 368.06 375.13 407.36 437.17

Thereisno significant differencein the axia stiffnessfor lengths 4, 6, and 8, and for
lengths 6, 8, and 10, yet 4 and 10 differ significantly. Length 12 differsfrom 4, 6, and 8,
but does not differ from 10.

17. g =Scm wherec, =C, =.5andC; =-1, soqA:.SYL +.5%, - X; =-.396 and
SC,2 =1.50. witht ;s = 2.447 and MSE = 03106, the Cl is (from 10.5 on page 418)

- 396+ (2.447), /—('03102 JL50) __ 396+ .305= (- .701,- .091).

18.
a. Let M = trueaverage growth when hormone #i isapplied. H, : m =...=m, will be
rejected infavor of H, at leasttwo m's differif f 3 F ., ;. =3.06. with
2 2
% = % = 3864.20 and SSX’ = 4280, SST = 41580
2 2 2 2 2 2
S?;' = (51) * (71) * (73) * (46) * (40) =4064.50, so SSTr = 4064.50 —
3864.20 = 200.3, and SSE = 415.80 — 200.30 = 215.50. Thus

MSTr = % =50.075, MSE = % =14.3667 , and

f= 50.075
14.3667

difference in the average growth with the application of the different growth hormones.

= 3.49. Because 3.493 3.06, rgject H,. There appearsto bea



19.

20.

21.

Chapter 10: The Andysisof Variance

fl4.3667
b. Qussis =437, W=4.37 2 = 8.28. Thesamplemeansare, inincreasing

order, 10.00, 11.50, 12.75, 17.50, and 17.75. The most extreme differenceis17.75—
10.00 = 7.75 which doesn’t exceed 8.28, so no differences are judged significant.
Tukey’s method and the F test are at odds.

140 =1680an
SSE/12 SSE

w= Q_05'3121/MJ—SE = 3.771’% = 4867~/ SSE . Thuswewish 156885 >3.89

(significance of f) and .4867~/ SSE > 10 (=20- 10, the difference between the extreme
X,.'S - sono significant differences areidentified). These become 431.88 > SSE and

SSE > 422.16, so SSE = 425 will work.

MSTr =140, error df. =12, 50 f = d Fos,1, =3.89.

1500

Now MSTr=125,s0 f = , W=.4867~/SSE asbefore, and the inequalities

become 385.60 > SSE and SSE > 422.16. Clearly no value of SSE can satisfy both
inequalities.

a.  Grand mean =222.167, MSTr = 38,015.1333, MSE = 1,681.8333, and f = 22.6. The
hypothesesare H, : m =...=m vs. H, :atleasttwo m'S differ. Rgect H, if

f 3 Fg.576 (butsincethereisnotablevaluefor N, =78, use

f3 Fose0 =3.34) With 22.63 3.34, wergect H,. Thedataindicatesthereisa
dependence on injection regimen.

b. Assume t .5 » 2.645
i) Confidenceinterval form - £(m, +m, +m, + m +m,):

- MSE(Sc?
SC,Xi ita/2,|(J-1) f

=-67.4% (2.645)\/1’681'81i3s(1'z) =(- 99.16,-35.64).

ii) Confidenceinterval for%(m2 +m,+m, + ms)- m:
1,681.8333(1.25)
14

=(29.34,94.16)

=6L75+ (2.645)\/
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Section 10.3

22. Summary quantitiesare X, =291.4, X, =221.6, x, =203.4, X, =2271.5,
X. =943.9, CF =49,497.07, SSXi? =50,078.07, fromwhich SST =581,

2 2 2 2
sy = (2914) +(222-6) +(205:’1-4) +(22;'5) - 49,497.07

= 49,953.57 - 49,497.07 = 456.50, and SSE =124.50. Thus

456.50 = 15217, MSE = 124.50

MSTr = =8.89,andf=17.12. Because

17123 Fg5,, =3.34, Hy i m =...=m, isrejected at level .05. Thereisadifference
inyield of tomatoes for the four different levels of salinity.

8

23. Jh=5%=4,%=434=5 X, =58.28, X, =55.

23

. X, =50.85, X, =45.50,

0_ \/889381 10
P Ty

MSE =8.89. With W, = Qe 414 \/

4.>><| 0.?<' wXI L‘||—\

X, - X, +W,, =(2.88)%(5.81); - X, W, = (7.43)% (5.81)*;
X, - X, *W, =(12.78) % (5.48)*; - X, +W,, = (4.55)+ (6.13);
X, - X, +W,, =(9.90)+(5.81)*; >—<3_ - X, *W,, = (5.35)% (5.81);

*|ndicates an interval that doesn’t include zero, corresponding to I S that are judged
significantly different.

This underscoring pattern does not have a very straightforward interpretation.

24.
Source Df SS MS F
Groups 31=2 152.18 76.09 5.56
Error 74-3=71 970.96 13.68
Total 74-1=73 112314

Since 5.563 F,,,, » 4.94, reject Hy :m =m, =m, atlevel .01
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The distributions of the polyunsaturated fat percentages for each of the four regimens
must be normal with equal variances.

We have all the Z. 'S, and we need the grand mean:

< = 8(43.0) +13(42.4) +17(43.1) + 14(435) _ 2236.9
: 52 52

SSTr=8 J,(% - x )? =8(43.0- 43.017)° +13(42.4- 43.017)°

+17(43.1- 43.017)* +13(435- 43017)° =8.334

anaMSTr = 222 = 2778

=43.017

SSTr = g (9 - 162 = 7(1.5) +12(1.3)° +16(1.2)* +13(1.2)* = 77.79 and
MSE = 7779 _ 1621 Then f = MSTr _ 2.778

48 MSE 1621
1.714< F ;5 = 2.20, wecan say that the p-valueis > .10. We do not reject the

null hypothesis at significance level .10 (or any smaller), so we conclude that the data
suggests no difference in the percentages for the different regimens.

=1.714 Since

i 1 2 3 4 5 6
J: 4 5 4 4 5 4
X 1 564 64.0 55.3 524 85.7 724 x . =386.2

i
X.: 1410 128 1383 1310 1714 1810 SS(]-2 =5850.20

Thus SST = 113.64, SSTr = 108.19, SSE = 5.45, MSTr = 21.64, MSE = .273, f =79.3.
Since 79.33 F 5., =4.10, Hy 1 m =...=my isrejected.

The modified Tukey intervalsare asfollows: (Thefirst numberis X;. - )_(J-_ and the

b S 0
secondis W, = Q,, X M*E i+i?.)
) ' 2 J, Jj E,
Pair Interval Pair Interval Pair Interval
1,2 1.30+1.37 23 - 1.03+1.37 35 -3.31+x1.37*
1,3 27+1.44 24 -.30+1.37 36 - 4.27+1.44*

14 1.00+1.44 25 - 434+1.29* 45 - 404+x137*
15 - 3.04+1.37* 26 -530+1.37* 46 - 5.00+1.44*
16 - 4.00+1.44* 34 37+1.44 56 -.96+1.37

Asterisksidentify pairs of meansthat are judged significantly different from one another.
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_ _ _ _ MSE(Sc?
The 99% t confidenceinterval is SCI X. x t'005’I Q)4 = -

Sc?
SGX =4i% +1X, +iX, +14%, - 12X, - 1%, =-4.16, u=.1719,

MSE =.273, t o5, = 2.845. Theresulting interval is
- 416+ (2.845),/(273)(1719) = - 4.16 + .62=(- 4.78- 3.54). Theinterval

in the answer section isa Scheffe’ interval, and is substantially wider than the t interval.

Let M = true average folacin content for specimens of brand I. The hypotheses to be

testedare Hy:m =m, =m, =m, vs. H, :atleasttwo m's differ.

2 2
SSK? =1246.88 and —-- = U684) 116161 0ssT-6527
n
2 2 2 2 2
s _(57.9)° , (375)° , (38.9)° , (349)* _ 1205.10 %
J, 7 5 6 6
SSTr =1205.10- 1181.61 = 23.49.
Source Df SS MS F
Treatments 3 2349 7.83 375
Error 20 41.78 209

Total 23 65.27
With numerator df = 3 and denominator = 20,
Fossz =3.10<3.75<F; ,,, =4.94,50.01< p- value <.05, and sincethe

p-value < .05, wergject Ho. At least one of the pairs of brands of green tea has different
average folacin content.
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b. With X. =8.27, 7.50, 6.35, and 5.82 for | =1, 2, 3, 4, we calculate the residuals

X - X for all observations. A normal probability plot appears below, and indicates

I
that the distribution of residuals could be normal, so the normality assumptionis
plausible.

Normal Probability Plot for ANOVA Residuals

resids
o
1
.

28.

_ 2.09¢ee1 0 o
c. Qusaz =3.96 and W, =3.96% | ——C&—+ -7, so the Modified Tukey
" 2 K3 95
intervals are:

Pair Interval Pair Interval

1,2 g7 2237 23 1.15+2.45

1,3 1.92+2.25 24 1.68+ 2.45

14 245+ 2.25+ 34 53+234

4 3 2 1

Only Brands 1 and 4 are different from each other.

SSTr = §|S(X.
Sl - X FlmsalR - KT -saxt- 2K sak,
=SJ X2-2X X _ +nX?=SJ X -2nX2 +nX? =SJ, X2 - nX2.

- X Fl=s3(

- X J=83,X2- 2% S3 X, + X%,
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=53 Var (%, )+ (E(X, JF |- nvar(x )+(E(x )

-0, 6 ey e+ SUMEY
&, 4 en g

= (l - 1)5 ?+8J, (m+ai)2 - [SJi(m+ai )]2

=(1-1)s2+SIn? +2nBJa, +SJa2- [me3,]° =(1-1s 2+SJa?,from

which E(MSTY) is obtained through division by (I - 1).

E(ssTr) =E(89,X? - nX? )= s,E(X?)- nE(X?)
|

2(02 +02 + (- 27 +1)
1

=4,F =2,

a a,=a,=0,a,=-1,a,=1,0F%=
and from figure (10.5), power » .90.

b. F2=5),s0F = .707«/3 andn, = 4(J - 1). By inspection of figure (10.5), J=
9 looks to be sufficient.

gl

¢ m=m=m=m,m=m+Lsom=m+{a,=a,=a,=a,=-
a,=a p2=2%) 160 F =126, 4.0, = 45. By ingect
4T =—7 b =1.26,n, =4,n, =45. By inspection

of figure (10.6), power » .55.

With S =1 (any other S wouldyieldthesame F ), a, =-1, a, =a,=0,a, =1,

e - 258 1) +5(0)" + Sl0) +5(1)2)=2.5, F =158,n,=3,n, =14, and
1

power » .62 .

With Poisson data, the ANOV A should be done using Yi = \/XT . Thisgives

y, =1543,y, =17.15,y, =1912,y, =20.01, y =71.71,

SSy; = 263.79, CF =257.12, SST = 6,67, SSTr = 2.52, SSE = 4.15, MSTr = 84, MSE =
26,f=323. Since F, 5,6 = 5.29, H, cannot be rejected. The expected number of flaws
per reel does not seem to depend upon the brand of tape.



33.

34.

Chapter 10: The Andysisof Variance

g(x) = Xﬁ' f?: nu(l- u) where U =§, so h(x) = (‘[u(l- u)]'llzdu . Froma
e nNg n

. . &[x0
table of integrals, this gives h(x) = arcan («/ u) = arcsm§ — T asthe appropriate
n

transformation.

1 & 1370 n-J
+—gh- —3s2=s+ s2=s’+Js?
5 -1

E(msTr) = -
-1 n

Supplementary Exercises

35.

36.

a Hy:m=m,=m,=m, vs. H, :atleasttwo m's differ;3.68isnot

3 Fois00 = 4.94, thusfail to reject Ho. The means do not appear to differ.

b. Wergject H, when the p-value <apha. Since.029 isnot < .01, we till fail to reject H,,.

a Hy:m =..=m will beregjectedinfavorof H_ :atleasttwo 'S differ if
f 3 Fos440 =261 With X =30.82, straightforward calculation yields

MSTr = 22212 = 55,278, MSE = 2> = 161098, ana

_ 55278
16.1098

among the five teaching methods with respect to true mean exam score.

= 3.43. Because 3.433 2.61,H,isrgected. Thereisadifference

b. Theformat of thistest isidentical to that of parta. The calculated test statistic is

33.12
= 20103 =1.65. Since 1.65< 2.61, H, is not rejected. The data suggests that
with respect to true average retention scores, the five methods are not different from one
another.
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37. Let M = true average amount of motor vibration for each of five bearing brands. Then the
hypothesesare Hy :m =...=m, vs. H, :atleasttwo m'S differ. The ANOVA table
follows:

Source Df SS MS F
Treatments 4 30.855 7.714 844
Error 25 22.838 0914

Total 29 53.6%4

8.44 > F ;4 »5 = 6.49, so p-value<.001, whichisalso < .05, so wergject Ho. At least
two of the means differ from one another. The Tukey multiple comparison is appropriate.
Q 55,25 = 4.15 (from Minitab output. Using Table A.10, approximate with

Qussza = 4.17). W, = 4.15/.914/6 = 1.620.

Pair X. - X;. Pair X. - X,
12 -2.267* 24 1.217
13 0016 25 2.867*
14 -1.050 34 -1.066
15 0,600 35 0584
23 2.283* 45 1.650*

*|ndicates significant pairs.

5 3 1 4 2

38.  x, =1548, x, =15.78, X, =12.78, X, =14.46, x, =14.94 x_=73.44, s
CF =179.78, SST =3.62, SSTr=180.71—179.78 = .93, SSE = 3.62- .93=2.69.

Source Df SS MS F
Treatments 4 93 233 216
Error 25 2.69 108

Total 29 3.62

Fos405 =2.76. Since2.16isnot 3 2.76, do not reject H, at level .05.
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~ + + +
q=258- 263 2'134 241+249 165, 1,5, = 2.060, MSE =.108, and

Sct = (1)2 + (- .25)2 + (- .25)2 + (- .25)2 + (- .25)2 =1.25, s0 a95% confidence

108)([1.25
interval for q is .165 + 2.060; f—(g) =.165+.309 = (- .144,.474). This

interval doesinclude zero, so O isaplausible valuefor ( .

m=m=m,m=n=m-s,som=m- 2s ,a,=a,=a,=4s,
a4:a5:-%S.ThenF2:‘|J—éa—
é 2 - 35 YU
Eé3( 2) + 2( 528) 0=1.632 and F =1.28,n, =4,n, =25. By
5@ S S 0

inspection of figure (10.6), power » .48, s0 b » .52.

Thisisarandom effectssituation. H,, :S 5 = O statesthat variation in laboratories doesn't

contribute to variation in percentage. H, will berejected in favor of Hy if
fs3 F.05,3,8 = 4.07 . SST =86,078.9897 — 86,077.2224 = 1.7673, SSTr = 1.0559, and SSE

1.055!
=.7114. Thus f = ij =3.96, whichisnot 3 4.07, so H, cannot be rejected at level
7R

.05. Variationin laboratories does not appear to be present.

a M = trueaverage CFF for the threeiris colors. Then the hypotheses are
Ho:m =m, =myvs. H, :atleasttwo m'S differ. SST = 13,659.67 — 13,598.36
204.7 134. 1
=6131, SSTR = &€ 0 ) (3 6) (690) - 13,598.36 = 23.00 The

8 5 6 5
ANOVA tablefollows:

Source Df SS MS F
Treatments 2 23.00 11.50 4.803
Error 16 38.31 2.39

Total 18 61.31

Because F;,,4 =3.63<4.803< F,,,; =6.23, .01<p-value< .05, sowe reject

Ho. There aredifferencesin CFF based on iriscolor.
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0
b Qs a1 =3.65 and W = 3.65 x\/z L Ji: so the Modified Tukey
i N
intervalsare:
Pair (Yi, - X;. )iVVi].
12 - 1.33+ 2.27
13 - 258+2.15+
23 -1.25+242
Brown Green Blue
2559 26.92 28.17

The CFF isonly significantly different for Brown and Blueiris color.

MSE) I:05| 1n- |) (2) 239)(3 63) 4.166. For m - m,,c;=1,c,=-

CZ
1,andc3 =0, so ’é_—— % %= .570. Similarly, for m - m,,
C 1 1 o C 1 1
/ G- il s / & ,/—+—=.606, df
J, 8" 6 MMy 3 "5 e

2 2 2 2
oM, +.5m, - m,, éc‘ =\/i+i+(;) = .498.

J Vs 5
Contrast Estimate Interval
m- m, 2559 2692 =-1.33 (- 1.33)+(570)(4.166) = (- 3.701.04)
m- m 2559 28.17=-258 (- 2.58) +(540)(4.166) = (- 4.83,-.33)
m, - m, 2692 2817=-1.25 (- 1.25)+ (606)(4.166) = (- 3.77,1.27)
5m, +.5m, - m, 192 (- 1.92) +(498)(4.166) = (- 3.99,0.15)

The contrast between M and M, since the calculated interval isthe only one that does not

contain the value (0).
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Source Df SS MS F Fos
Treatments 3 24,937.63 831254 1117.8 407
Error 8 59.49 744

Total 11 24,997.12

Because 1117.83 4.07, H,:m =m, =m, =m, isrejected. Q5,5 = 4.53, s0

/7.44
w=453 = = 7.13. Thefour samplemeansare X, =29.92, X, = 33.96,

X, =115.84, and X, =129.30. Only X, - X, < 7.13, soal meansarejudged

significantly different from one another except for M), and M (corresponding to PCM and
OCM).

Yij -Y. = C(Xij - X ) and Y_| -Y. = C()Ti_ - X ) so each sum of squares
involving Y will be the corresponding sum of squaresinvolving X multiplied by ¢ Since F
isaratio of two sums of squares, ¢ appears in both the numerator and denominator so

cancels, and F computed from Yj;’s = F computed from Xj;'s.

The ordered residuals are —6.67, -5.67, -4, -2.67,-1,-1,0,0,0, .33,.33, .33, 1, 1, 2.33, 4, 5.33,
6.33. The corresponding z percentiles are—1.91, -1.38, -1.09, -.86, -.67, -.51, -.36, -.21, -.07,
.07, .21, .36, .51, .67, .86, 1.09, 1.38, and 1.91. The resulting plot of the respective pairs (the
Normal Probability Plot) isreasonably straight, and thus there is no reason to doubt the
normality assumption.

311



Chapter 10: The Andysisof Variance

312



CHAPTER 11

Section 11.1

30.6 99.2 = 31—6:53 =1.55. Since 1.55 is

a MSA=T"=765 MSE=2=493 f,
4 12

not 3 F 5,1, =3.26, don't reject Hoa. Thereisno differencein true averagetire

lifetime due to different makes of cars.

b. MSB= %=14.70, fs _1470 2.98. Since 2.98 isnot

Fos312 = 3.49, don't reject Hog. Thereisno differencein true averagetire lifetime

dueto different brands of tires.

a x, =163, x, =152, x, =142, x, =146, x, = 215,x , =188,

_ _ - _ (603" _
X; =200, x =603, S| =30,599, CF =~ =30,300.75, 05T =

20825, SSA=1[(163)? + (152)° + (142)* + (146)° |- 30,300.75=83.58,
SSB =30,392.25 - 30,300.75 = 91.50,
SSE = 298.25- 83.58- 91.50 = 123.17.

Source Df SS MS F
A 3 83.58 27.86 1.36
B 2 91.50 4575 2.23
Error 123.17 20.53
Tota 11 298.25

Fosse =4.76, Fos5,5 = 95.14. Sinceneither f is greater than the appropriate critical
value, neither Hoa nor Heg isrejected.

=42,d,=-292 4, =-158,
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X, =927, x, =1301, x, =1764, x, = 2453, x, =1347,x, =1529,
X, =1677, x, =1892, X =6445, SSX; = 2,969,375,

2
CF = @ =2,596,126.56, SSA = 324,082.2, SSB = 39,934.2,

SST =373,248.4, SSE=9232.0

a
Sour ce Df SS MS F
A 3 324,082.2 108,027.4 1053
B 3 39,934.2 133114 130
Error 9 92320 10258
Total 15 3732484

Since Fg, 54 = 6.99, both Hoa and Hop are rejected.

1025.8
b. Quuso =5.96,W=5096, /T =954

i: 1 2 3 4
X 23175 32525 44100 61325

All levels of Factor A (gasrate) differ significantly except for 1 and 2

c. W=954 asinb
i 1 2 3 4

X! 33675 38225 41925 473

Only levels 1 and 4 appear to differ significantly.
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a  After subtracting 400, X, =151, X, =137, x, =125, x, =124,

X, =183,x, =169, x ; =185, x. =537, SSA=159.98, SSB = 38.00,
SST =23825, SSE=40.67.

Source Df SS MS f Fos
A 3 15958 53.19 7.85 476
B 2 38.00 19.00 280 5.14
Error 6 40.67 6.78
Total 11 238.25

Since 7.853 4.76 , rgject Hoa: @, =@, =&, =a, =0: Theamount of coverage
depends on the paint brand.

Since 2.80isnot 3 5.14, do not rgject Hoa: b, = b, =b,; =0. Theamount of
coverage does not depend on theroller brand.

Because Hog Was not rejected. Tukey’s method is used only to identify differencesin
levels of factor A (brands of paint). Qs , s = 4.90,w=7.37.

i: 4 3 2 1
X 413 417 457 50.3

Brand 1 differs significantly from all other brands.

Source Df SS MS f
Angle 3 58.16 19.3867 2.5565
Connector 4 24697 61.7425 81419
Error 12 91.00 7.5833
Total 19 39.13
H,:a,=a, =a,=a,=0; H_ :atleastone @, isnot zero.

f, =25565< F,,,, =5.95, sofail toreject H,. The datafailsto indicate any effect
due to the angle of pull.
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MSA:E =5.85, MSE :@ =3.20, f :5'—85 =1.83, whichisnot
2 8 3.20

significant at level .05.

Otherwise extraneous variation associated with houses would tend to interfere with our
ability to assess assessor effects. If there really was a difference between assessors,
house variation might have hidden such a difference. Alternatively, an observed
difference between assessors might have been due just to variation among houses and the
manner in which assessors were allocated to homes.

CF =140,454, SST = 3476,
(905) +(913)* +(936)
18

- 140,454 = 2977.67 , SSE = 469.55, MSTr = 14.39, MSE =

SSTr =

- 140,454 = 28.78,

Sl = 430,295

1381, f;, =1.04, whichisclearly insignificant when comparedto F g, ¢,

fg =12.68, whichissignificant, and suggests substantial variation among subjects. 1f

we had not controlled for such variation, it might have affected the analysis and
conclusions.

X, =434, X, =443, x, =853, x. =17.30, SST =3.8217,

SSTr =1.1458, S :@- 9.9763 =.9872, SSE=1.6887,

MSTr =.5729, MSE =.0938,f=6.1. Since 6.13 F;,,, =3.55,Hoa is

rejected; there appears to be a difference between anesthetics.

Qs =3.61,w=.35 X, =.434, X, =.443, X, =.853, soboth anesthetic 1
and anesthetic 2 appear to be different from anesthetic 3 but not from one another.
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9.
Source Df SS MS f
Treatment 3 81.1944 27.0648 22.36
Block 8 66.5000 83125 6.87
Error 24 29.0556 1.2106
Total 35 176.7500
Fos324 =3-01. Reject Ho. Thereisan effect dueto treatments.
Qusars =3.90; w=(3.90) % =1.43
1 4 3 2
856 9.22 10.78 12.44
10.
Source Df SS MS f
Method 2 2323 1161 8.69
Batch 9 86.79 9.64 722
Error 18 2404 134
Total 29 134.07

Foi21s = 6.01<8.69<F, ,,5 =10.39, 0.001 < p-value < .01, which is significant.

At least two of the curing methods produce differing average compressive strengths. (With p-
value < .001, there are differences between batches as well.)

1.34
Qos.318 =3.61; w= (3.61) 0 =132
Method A Method B Method C
29.49 3131 31.40

Methods B and C produce strengths that are not significantly different, but Method A produces
strengths that are different (less) than those of both B and C.
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11. Theresidual, percentile pairs are (-0.1225, -1.73), (-0.0992, -1.15), (-0.0825, -0.81), (-
0.0758, -0.55), (-0.0750, -0.32), (0.0117, -0.10), (0.0283, 0.10), (0.0350, 0.32), (0.0642, 0.55),
(0.0708, 0.81), (0.0875, 1.15), (0.1575, 1.73).

Normal Probability Plot

0.1 ]

residuals
-

0.0 —

0.1 —

z-percentile

The pattern is sufficiently linear, so normality is plausible.

12. MSB—L;)’S—2838 MSE—%—SZO fy =887, Fy 45 =7.01, andsince

8.873 7.01, wereject H, and conclude that S é >0.

13.
a WithY, =X, +d, ¥, =X, +d, Y, =X +d, Y. =X +d, wal
quantitiesinsi de the parenthesesin (11.5) remaj n unchanged whenthe Y quantitiesare
substituted for the corresponding X’s(e.g., Y; - Y. —X - X, etc).

b. With'Y;; = cX;, each sum of squaresfor Y isthe corresponding SSfor X multiplied by
c. However, when F ratios are formed the ¢ factors cancel, so all F ratios computed
from Y areidentical to those computed from X. If Yij = CXij +d, the conclusions

reached from using the Y’ swill beidentical to those reached using the X’s.

1. E(X. - X )=E(X,)- g ?X”—-—E sx,g
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15.
4
a Sa’=24,s0F -éé%é);&l 125, F =1.06,n, =3, n, =6, andfrom
4216 g
figure 10.5, power » .2 . For the second alternative, F =1.59, and power » .43.
b 2 " O
o, F2=208 2 —@E90_ 100 o F=100,n,=4,n,=12 and
J g S eSeplbg
power » .3.
Section 11.2
16.
a
Source Df SS MS f
A 2 30,763.0 15,381.50 3.79
B 3 34,185.6 11,395.20 281
AB 6 43581.2 726353 179
Error 24 97,436.8 4059.87
Total 35 205,966.6

b. fag =1.79 whichisnot 3 F ¢ ,, = 2.51, 50 Hoap cannot be rejected, and we

conclude that no interaction is present.

c. fo=379whichis® F,,, =3.40,50H, isrejected at level .05.
d. fg =281 whichisnot3 F,,, = 3.01, s0Hog isnot rejected.
4059.87
e Quszx =353, w=35 BETEE =64.93.
3 1 2
3960.02 4010.88 4029.10

Only times 2 and 3 yield significantly different strengths.
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Source Df SS MS f Fos
Sand 2 705 3525 376 426
Fiber 2 1,278 639.0 6.82* 426

Sand& Fiber 4 279 69.75 0.74 3.63

Error 9 843 93.67

Total 17 3,105

There appears to be an effect due to carbon fiber addition.

Sour ce Df SS MS f Fos
Sand 2 106.78 53.39 6.54* 426
Fiber 2 87.11 4356 5.33* 426

Sandé& Fiber 4 8.89 222 27 3.63
Error 9 7350 8.17
Total 17 276.28

There appearsto be an effect due to both sand and carbon fiber addition to casting
hardness.

Sand% 0 15 30 0 5 30 0 15 30
Fibe% 0 O 0 025 025 025 05 05 05
X 62 68 695 69 715 73 68 715 74

The plot below indicates some effect due to sand and fiber addition with no significant
interaction. This agrees with the statistical analysisin partb

75 A o 0.00
: + 025
x 050
*
70 -
o
&
Q x [+
1S
65 —
[s]
T T T T
0 10 20 30

Sand%

320



Chapter 11: Multifactor Andysis of Variance

Source Df SS MS f F.05 F_01
Formulation 1 2,253.44 2,253.44 376.2** 475 9.33
Speed 2 230.81 11541 19.27** 3.89 6.93
For mslé'gé'do” & 2 1858 9.29 155 | 389 | 693
Error 12 71.87 5.99
Total 17 2574.7

a. Thereappearsto be no interaction between the two factors.

b. Bothformulation and speed appear to have a highly statistically significant effect on
yield.

c. Letformulation = Factor A and speed = Factor B.
For Factor A: m =187.03 m, =164.66
For Factor B: m, =177.83 m, =170.82 m, =178.88
For Interaction: m, =189.47 m, =180.6 m, =191.03
m, =166.2 m, =161.03 m, =166.73
overall mean: m=175.84
a;=m - m: a,=1119 a,=-1118
b, =m, - m: b, =1.99 b,=-502 b,=304

j
Yy =m; - (m+a, +b,):
Y, =45 y,=-141 y,=.96
Yo =- 45 Yoo = 1.39 Y3 =- 97

d.

Observed Fitted Residual Observed Fitted Residual
189.7 189.47 0.23 161.7 161.03 0.67
188.6 189.47 -0.87 159.8 161.03 -1.23
190.1 189.47 0.63 161.6 161.03 057
165.1 166.2 -1.1 189.0 191.03 -2.03
165.9 166.2 -0.3 193.0 191.03 197
167.6 166.2 14 191.1 191.03 0.07
185.1 180.6 45 163.3 166.73 -343
1794 180.6 -1.2 166.6 166.73 -0.13
177.3 180.6 -33 170.3 166.73 357
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Residual  Percentile  z-percentile

|
1 -343 2778 -191
2 -3.30 8.333 -1.38
3 -2.03 13.889 -1.09
4 -1.23 19.444 -0.86
5 -1.20 25.000 -0.67
6 -1.10 30.556 -051
7 -0.87 36.111 -0.36
8 -0.30 41.667 -021
9 -013 47.222 -0.07
10 0.07 52.778 0.07
11 0.23 58.333 021
12 057 63.889 0.36
13 0.63 69.444 051
14 0.67 75.000 0.67
15 140 80.556 0.86
16 197 86.111 1.09
17 357 91.667 138
18 450 97.222 191

Normal Probability Plot of ANOVA Residuals

5
®
4 —
]
3 -
2 — ]
= a
g 1
o owa
D0 ]
g © .'.
o »
14 aahk
2 — ]
-3 — o a
-4 —
T T T T T
2 1 0 1 2
z-percentile

The residual s appear to be normally distributed.
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j

Xi i 1 2 3 X..
1 16.44 17.27 16.10 4981
i 2 16.24 17.00 15.91 49.15
3 16.80 17.37 16.20 50.37
X 1 4948 51.64 4821 X =149.33
CF=1238.8583
Thus SST = 1240.1525 — 1238.8583 = 1.2942,
SSE =1240.1525 - % =.1530,
.81)% +(49.15)* +(50.37)°
SGA= (49 81) (49 ;5) (50 37) - 1238.8583=.1243, SSB =1.0024
Source Df SS MS f Fo1
A 2 1243 0622 3.66 8.02
B 2 1.0024 5012 29.48* 8.02
AB 4 .0145 .0036 21 6.42
Error 9 1530 0170
Total 17 1.2942

Hoag Cannot be rejected, so no significant interaction; Hoa cannot be rejected, so varying
levels of NaOH does not have a significant impact on total acidity; Hog isrejected: type
of coal does appear to affect total acidity.

Q30 =943, W=5.43 /% =.289

i 3 1 2

X i 8.035 8.247 8.607

Coal 2 isjudged significantly different from both 1 and 3, but these latter two don't differ
significantly from each other.
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20. Xy, =855, X, =905,X;; =845,x,, =705,X,, =735,X,; =675,
X,. = 2605, X, . = 2115, x, =1560, X ,. =1640, X , =1520, x . = 4720,
SSSX?, =1253150, CF=1,237,68889, SSX;. = 3,756,950, which yieldsthe

accompanying ANOVA table.
Source Df SS MS f Fo1
A 1 13,338.89 13,338.89 192.09* 9.93
B 2 1244.44 622.22 8.96* 6.93
AB 2 44.45 22.23 32 6.93
Error 12 833.33 69.44
Total 17 15461.11

Clearly, fag = .32 isinsignificant, so Hoag is Not rejected. Both Hya and Hgg are both
rejected, since they are both greater than the respective critical values. Both phosphor type
and glass type significantly affect the current necessary to produce the desired level of
brightness.

21.

2
M =64,954.70,

(24,529,699)

a SST =12,280,103-
SSE =12,280,103- =15,253.50,

=22941.80, SSB = 22,765.53,

2
ooa = 122380901 (19143)
10 0

SSAB = 64,954.70 - [22,941.80 + 22,765.53 +15,253.50] = 3993.87

Source Df SS MS f
A 2 2204180 1147090  =0%0=22098
B 4 2276553 5691.38 e =11.40
AB 8 399387 499.23 49
Error 15 15,253.50 1016.90
Total 29 64,954.70

b. fas=.49isclearly not significant. Since 22.983 F;,; = 4.46, Hox isrejected; since

11403 F ;5 =3.84, Hopisalso rejected. We conclude that the different cement

factors affect flexural strength differently and that batch variability contributes to
variation in flexural strength.
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22. The relevant null hypothesesare H,, 2, =a, =a, =a, =0; Hy, :s 2 =0;
Homs 1S & =0.
2
SST =11,499,492 - M =20,591.83,
SSE =11,499,492 - M =8216.0,
A 2 2 2 2 u 2
SsA = 2(4112) +(4227) +(4122)* +(4137) o (16598) _ 13875,
& 6 G
é 2 2 2 l\J 2
— é(5413) +(5621)° + (5564) o (16,598)° _ 888,08,
& 8 qa 24
SGAB = 20,591.83- [8216.0 +1387.5+ 2888.08] =8216.25
Source Df SS MS f Fos
A 3 13875 4625 =3 476
B 2 2,888.08 144404 S22 =107 514
AB 6 8,100.25 135004  M¥E=197 3.00
Error 12 8,216.0 684.67
Total 23 20,591.83

Interaction between brand and writing surface has no significant effect on the lifetime of the
pen, and since neither fo nor fg isgreater than its respective critical value, we can conclude
that neither the surface nor the brand of pen has a significant effect on the writing lifetime.
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23. Summary quantitiesinclude x,. = 9410, x, =8835, X, =9234, x , =5432,
X, =5684, X, =5619, x, =5567,X, =5177,x .. =27,479,
CF =16,779,898.69, SX|2 = 251,872,081, szJ =151,180,459, resultinginthe
accompanying ANOVA table.

Source Df SS MS f
A 2 1157338 578669 e =26.70
B 4 1793009 448252 — =20.68
AB 8 173417 216.77 N =138
Error 30 4716.67 157.22
Total 44 35,954.31

Since 1.38 < F,43, =3.17, Hoe cannot be rejected, and we continue:

26.703 F;,,5 =8.65,and 20.683 F 5 = 7.01, so both Hoa and Hog are rejected.

Both capping material and the different batches affect compressive strength of concrete
cylinders.

24,
- - 1 1
a E(Xi“ - X"'):I??E(X”k)- W?JS%E(XUK)
:%,'S§(m+ai +b, "'gij)' ﬁi ?%(m"'ai +b, +gij)= m+a; - m=a,

o Elg,) = SEX,)- —-SSE(x,)- S-S, )+ -sSSE(X,)

k
=m+a, +b; +g; - (m+ai)' (m+bj)+m=gij
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_ _ ~ s - 1 .
25. With g =a, - ai(,q = Xi.. - Xiq;. _stks(xijk- Xiqk),andsmce| ¢
X;jandXg, areindependent for every j, k. Thus
~ > > \_Ss? s?_2°
Varig)=Var{X. J+Var{X., |=—+—=

(because Var (X, )=Var(e )

- fZMSE
and Var(eijk)=s z)sosd = K The appropriate number of d.f.isl1J(K — 1), so

the C.l. is ()_(I - )_(m_)i b 2130k 9)1 fZITJ/I—KSE . For thedataof exercise 19, X, =49.15,

X, =50.37 ,MSE=.0170, t s, = 2.262,J=3,K =2, sothe Cll.is

(49.15- 50.37) + 2.262\/$ =-1.22+.17 =(- 1.39,- 1.05).

26.

E(MSAB) LS :_
E(MSE) s ?

appropriate F ratio.

1ifs&=0and>1if S >0,s0 isthe

E(MsA) _S’HKsE+Ksy . JKsE
E(MsAB) s?+Ks s?+Ks

G

1if s 2=0and>1if

A
s5>0,s0 5 isthe appropriate F ratio.
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Section 11.3
27.
a
Source Df SS MS f Fos
A 2 14,144.44 7072.22 61.06 335
B 2 5511.27 2755.64 2379 335
C 2 244,696.39 122.348.20 1056.24 335
AB 4 1,069.62 267.41 231 273
AC 4 62.67 15.67 14 273
BC 4 331.67 82.92 .12 273
ABC 8 1,080.77 135.10 117 231
Error 27 312750 115.83
Total 53 270,024.33

b. Thecomputed f-statistics for all four interaction terms are less than the tabled values for
statistical significance at the level .05. Thisindicatesthat none of the interactions are

statistically significant.

c. Thecomputed f-statistics for all three main effects exceed the tabled value for
significance at level .05. All three main effects are statistically significant.

_ ’ 115.83
d.  Qgsg 7 isnottabled, use Qys5,, =3.53, w=3.53 W =8.95. All three

levelsdiffer significantly from each other.

28.

Source Df SS MS f Fo1
A 3 19,149.73 6,383.24 2.70 472
B 2 2,589,047.62 1,294,523.81 546.79 5.61
C 1 157,437.52 157,437.52 66.50 7.82
AB 6 53,238.21 8,873.04 375 367
AC 3 9,033.73 301124 127 472
BC 2 91,880.04 45,940.02 1940 5.61
ABC 6 6,558.46 1,093.08 46 367

Error 24 56,819.50 2,367.48

Total 47 2,983,164.81

The statistically significant interactions are AB and BC. Factor A appears to be the least
significant of all the factors. It does not have a significant main effect and the significant
interaction (AB) isonly slightly greater than the tabled value at significance level .01
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2

20.  1=3J=2,K=4L=4 SSA= KLY (X - X )*; SB=IKLQ (>_<.,-.. - F
sC=1Lg (X, - X )
Forlevd A: X, =378l X, =3625 X, =4.469
For level B: X, =4979 X, =2.938

ForledC: X, =3417 X,=5875 X,=.875 X, =5667

X =3958
SSA =12907;  SSB=99.976; SSC =393436
a
Source Df SS MS f Fos*
A 2 12.907 6.454 104 315
B 1 99.976 99.976 16.09 4,00
C 3 393436 131.145 21.10 2.76
AB 2 1.646 823 A3 315
AC 6 71.021 11.837 190 225
BC 3 1542 514 .08 2.76
ABC 6 9.805 1634 .26 225
Error 72 447.500 6.215
Total 9%5 1,037.833

*use 60 df for denominator of tabled F.
b. Nointeraction effectsaresignificant at level .05

c. Factor B and C main effects are significant at the level .05

. ’ 6.215
d. Q‘05’4’72 isnot tabled, use Q.05,4,60 = 374, w=3.74 W =190.

M achine: 3 1 4 2
Mean: 875 3417 5.667 5.875
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30.
a. SeeANOVA table
b.
Source Df SS MS f Fos
A 3 .22625 075417 77.35 9.28
B 1 .000025 .000025 .03 1013
C 1 .0036 .0036 369 1013
AB 3 004325 0014417 148 9.28
AC 3 .00065 .000217 22 9.28
BC 1 .000625 .000625 64 10.13
ABC 3 .002925 .000975
Error -- -- -
Total 15 2384

The only statistically significant effect at the level .05 isthe factor A main effect: levels

of nitrogen.
.002925
c. Qg3 =682 ;Ww=6.82 [ F—— =.1844.
(2)2)
1 2 3 4
1.1200 1.3025 1.3875 1.4300
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%j. B1 B2 Bs

Ay 210.2 224.9 2181
A, 241 2295 215
As 217.7 230.0 202.0
X, 6520 6344 6416
X, A, A, As

C 2138 2220 205.0
G, 225.6 2265 2235
(03 2138 226.6 2212
X, 653.2 675.1 649.7
X ik C G G

B1 2135 2205 2180
B, 214.3 246.1 224.0
Bs 2130 209.0 219.6
X, 6408 6756 6616

SSX? =43538226 SSX?, =435156.74 SSX’, =435666.36
Sx2 =130515792 Sx? =1304540.34  Sx2 =1304,77456
Also, SSS(izjk =145,386.40, x =1978, CF=144,906.81, from which we obtain the

ANOVA table displayed in the problem statement. F,, s =7.01, sothe AB and BC

interactions are significant (as can be seen from the p-values) and tests for main effects are
not appropriate.
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32.
. E(MSABC) _s®+Ls, _ |
a Since ( )= —A8C =1ifS 2pc =0 and>1if s 75 >0,
E(MSE) s
MSABC . . . 2 - ,
————— istheappropriate F ratio for testing H, :S 5 =0. Smilaly, is
MSAB
the F ratio for testing H, :s 2 =0; isthe F ratio for testing H,, : all
MSABC
g% =0;and isthe Fratio for testing H, :all a; =0.
b.
Sour ce Df SS MS f Fo1
A 1 14,318.24 14,318.24 . =1985 9850
B 3 96564 3218.80 B =6.24 9.78
c 2 27022 113511 =315 561
AB 3 3408.93 113631 ss =241 978
AC 2 144258 721.29 see =2.00 561
BC 6 3096.21 516,04 MEL =143 367
ABC 6 2832.72 47212 yEEC =131 367
Error 24 8655.60 360.65
Total 47
Atlevel .01, no Hy's can be rejected, so there appear to be no interaction or main effects
present.
33.
Source Df SS MS f
A 6 67.32 11.02
B 6 51.06 851
Cc 6 543 91 61
Error 30 44.26 1.48
Total 48 168.07

Since 61 < F g4 50 = 2.42, treatment was not effective.
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34.
1 2 3 4 5 6
X 144 205 272 293 85 %8
X, 171 199 147 21 177 182
X\ 180 161 186 171 169 230
Thus X =1097, CF = % =33,42803, SSX;,, = 42219, Sx? = 239,423,
Sx? =203745, Sx =203.619
Source Df SS MS f
A 5 6475.80 1295.16
B 5 520.47 105.89
C 5 508.47 101.69 159
Error 20 127723 63.89
Total 35 8790.97
Since 1.59isnot 3 F .o, = 2.71, Hocis not rejected; shelf space does not appear to affect
sales.
35.
1 2 3 4 5
X; 4068 3004 4402 314 B2 Sx? =6630.91
X 2019 3161 3731 4016 4182 Sx?. = 6605.02

.
X, 3659 3667 3603 3450 3630 Sx’ =6489.92

x_=180.09, CF = 1207.30, SSX?,, =1358.60

Sour ce Df SS MS f
A 28.89 122 10.78
B 2371 593 8.85
C 4 0.69 017 025
Error 12 801 67
Total 24 61.30

F4.12 = 3.26, so both factor A (plant) and B(leaf size) appear to affect moisture content, but
factor C (time of weighing) does not.
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36.

Source Df SS MS f For
A (laundry treatment) 39.171 13.057 16.23 395
B (pen type) .665 3325 41 479
C (Fabric type) 5 21.508 4.3016 5.35 317
AB 6 1432 .2387 30 2.96
AC 15 15.953 1.0635 132 219
BC 10 1.382 1382 A7 247
ABC 30 9.016 .3005 37 186

Error 144 115.820 8043
Total 215 204.947

* Because denominator degrees of freedom for 144 is not tabled, use 120.

At thelevel .01, there are two statistically significant main effects (laundry treatment and
fabric type). There are no statistically significant interactions.
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Source Df MS f For*
A 2 2207.329 2259.29 5.39
B 1 47.255 48.37 7.56
C 2 491.783 503.36 5.39
D 1 044 .05 7.56
AB 2 15.303 15.66 5.39
AC 4 275.446 281.93 402
AD 2 470 48 539
BC 2 2141 219 5.39
BD 1 273 .28 7.56
CD 2 247 25 539
ABC 4 3714 380 4.02
ABD 2 4072 417 5.39
ACD 4 767 .79 402
BCD 2 .280 .29 539
ABCD 4 347 355 402
Error 36 977
Total 71

* Because denominator d.f. for 36 is not tabled, use d.f. = 30

SST = (71)(93.621) = 6,647.091. Computing al other sums of squares and adding them up =
6,645.702. Thus SSABCD = 6,647.091 — 6,645.702 = 1.389 and

MSABCD = % =.347.

At level .01 the statistically significant main effectsare A, B, C. Theinteraction AB and AC
are also statistically significant. No other interactions are statistically significant.
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Section 11.4
38.
a
Comtion %12 gy ss=lemed
@ =% 4042 8392 1991.0 3697.0
a= X, 4350 11518 1706.0 164.2 1685.1
b=x,, 549.6 717.6 834 5834 21,2722
ab = X,,, 602.2 9334 80.8 24.2 36.6
C= Xy 339.2 308 3126 -285.0 5076.6
ac = Xy, 3784 52.6 2708 -26 4
bc=x,, 4734 39.2 218 -41.8 109.2
abc = X,,, 515.0 416 24 -19.4 235

(3697)?

SSSSK, =882,573.38;  SST =882573.38- =28,335.3

The important effects are those with small associated p-values, indicating statistical
significance. Those effects significant at level .05 (i.e., p-value < .05) are the three main
effects and the speed by distance interaction.
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Condition Total 1 2 Contrast SS= i%fs@i
111 315 927 2478 5485
211 612 1551 3007 1307 A=71177.04
121 534 1163 680 1305 B =70,959.38
221 967 1844 627 199 AB =1650.04
112 453 297 624 529 C=11,660.04
212 710 383 681 -53 AC=117.04
122 737 257 86 57 BC=13538
222 1107 370 113 27 ABC=30.38

_ _584+967+737+1107- 315- 612- 453- 710

61 =X, - X o =54.38
~nc _ 315- 612+584- 967 - 453+710- 737 +1107 _ _
0, = =221;
24
§2C =i =221
54852

Factor SS's appear above. With CF = 7 =1,253551.04 and

SSSSK;, =1,411,889, SST = 158,337.96, from which SSE = 2608.7. The ANOVA

table appears in the answer section. F ., = 4.49, from which we see that the AB
interaction and al the main effects are significant.

337



40.

41.

Chapter 11: Multifactor Andysis of Variance

a. Intheaccompanying ANOVA table, effectsarelisted in the order implied by Y ates
agorithm. SSSSngZklm =478316, x =38814,so

SST =4783.16- M =72.56 and SSE = 72.56 — (sum of all other SS's) =
35.85.
Source Df SS MS f
A 1 A7 A7 <1
B 1 194 194 <1
C 1 342 342 153
D 1 8.16 8.16 364
AB 1 .26 .26 <1
AC 1 .74 74 <1
AD 1 .02 .02 <1
BC 1 13.08 13.08 584
BD 1 91 91 <1
CD 1 .78 .78 <1
ABC 1 .78 .78 <1
ABD 1 6.77 6.77 3.02
ACD 1 62 62 <1
BCD 1 176 176 <1
ABCD 1 00 .00 <1
Error 16 35.85 224
Total 31

b. Fos116 =449, s0noneof theinteraction effectsisjudged significant, and only the D
main effect is significant.

SSSS?

ijkim

= 3308143, X _ =11,956, so CF =

2
@ = 2,979,535.02, and

(effectcontast )?
48
ANOVA table appearsin the answer section. F 5, » 4.15, avalue exceeded by the F

ratiosfor AB interaction and the four main effects.

SST =328,607.98. Each SSis

and SSE is obtained by subtraction. The



Chapter 11: Multifactor Andysis of Variance

42. SSSSngzklm =32917,817, x =39371, SS= M , and error d.f. = 32.
Effect MS f Effect MS f
A 16,170.02 342 BD 3519.19 <1
B 332,167.69 70.17 CD 4700.52 <1
C 43,140.02 911 ABC 1210.02 <1
D 20,460.02 433 ABD 15,229.69 322
AB 1989.19 <1 ACD 1963.52 <1
AC 776.02 <1 BCD 10,354.69 219
AD 16,170.02 342 ABCD 1692.19 <1
BC 3553.52 <1 Error 4733.69

Foi132 » 7.5, soonly the B and C main effects are judged significant at the 1% level.

= Condition/E SS= (contras}? f Condition/ SS= (contras)? f
ffect 16 Effect 16
(2) -- D 414.123 1067.33
A 436 112 AD 017 <1
B .099 <1 BD 456 <1
AB 497 128 ABD .055 -
C 109 <1 CD 2190 5.64
AC 078 <1 ACD 1.020 --
BC 1404 3.62 BCD 133 --
ABC 051 - ABCD 681 -

SSE =.051+.055+1.020 +.133 + .681 = 1.940, df. = 5, 0MSE =.388. F 5, = 6.61, s0

only the D main effect is significant.
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44,
a. Theeight treatment conditions which have even number of |ettersin common with abcd
and thus go in the first (principle) block are (1), ab, ac, bc, ad, bd, cd, and abd; the other
eight conditions are placed in the second block.

b. andc.
X =1290, SSSS(iizkI =105160, so SST = 1153.75. Thetwo block totals are 639

2 2 2
and 651, so SBl = 6389 + 6581 - 121960 =9.00, whichisidentical (asit must be

here) to SSABCD computed from Y ates algorithm.

Condition/Effect Block SS = Leontrest” f
1) 1 -
A 2 2500 1.93
B 2 9.00 <1
AB 1 1225 <1
c 2 49.00 379
AC 1 225 <1
BC 1 25 <1
ABC 2 9.00 -
D 2 930.25 71.90
AD 1 36,00 278
BD 1 2500 1.93
ABD 2 2025 -
CD 1 4,00 <1
ACD 2 2025 -
BCD 2 225 -
ABCD=Blocks 1 9.00 --
Total 1153.75

SSE =9.0+ 20.25+ 20.25+ 2.25 = 51.75; df. = 4, so MSE = 12.9375,
Fos14 = 7.71, so only the D main effect is significant.
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a. Theallocation of treatments to blocksis as given in the answer section, with block #1
containing all treatments having an even number of lettersin common with both ab and
cd, etc.

=111,853.88. Theeight

2
b. X = 16,898, so SST =9,035054 - @

block ™ replication totals are 2091 ( = 618 + 421 + 603 + 449, the sum of the four
observationsin block #1 on replication #1), 2092, 2133, 2145, 2113, 2080, 2122, and
2091 + 4 2122° i 16,8987

4 4
aswell asall Fratios appear in the ANOVA table in the answer section. With

F 1112 =933, only the A and B main effects are significant.

2122, s0 SBI = =898.88. Theremaining SS's

Theresult isclearly trueif either defining effect is represented by either asingle letter (e.g.,
A) or apair of letters (e.g. AB). The only other possibilities are for both to be “triples’ (e.g.
ABC or ABD, all of which must have two lettersin common.) or one atriple and the other
ABCD. But the generalized interaction of ABC and ABD is CD, so atwo-factor interaction is
confounded, and the generalized interaction of ABC and ABCD isD, so amain effect is
confounded.

See the text’ s answer section.
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a. Thetreatment conditionsin the observed group are (in standard order) (1), ab, ac, bc, ad,
bd, cd, and abcd. Theadliaspairsare{A, BCD}, {B, ACD}, {C, ABD}, {D, ABC}, {AB,
CD}, {AC, BD}, and{AD, BC}.

> A B C D AB AC AD
(1) =19.09 - - - - + + +
Ab=20.11 + + - - + - -
Ac=21.66 + - + - - + -
Bc=20.44 - + + - - - +
Ad=13.72 + - - + - - +
Bd=1126 - + - + - + -
Cd=1172 - - + + + - -
Abcd =12.29 + + + + + + +

Contrast 527 -2.09 193 -32.31 -3.87 -1.69 .79

SS 347 55 A7 130.49 187 .36 .08

f 451 <1 <1 169.47 SSE=231 MSE=.770

Fos13 =10.13, so only the D main effect isjudged significant.
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49 B C D E AB AC AD AE BC BD BE CD CE DE
a 704 + - - - - - - - - + + 4+ + + o+
b 7211 -+ - - - -+ o+ o+ - - -+ +
c 70.4| - - + - - + - + o+ - - +
abc 738+ + + - - + 4+ . -
d 674 - - - + - + + + + -
abd 670 + + - + - + - + - - + -
acd 66.6 + - -+ + o+ - -
bcd 668 - + + + - - + -+ - -
e 680 - - - - + + o+ + -+ - -
ae 678 + + - -+ - + o+ - -
ace 675+ - + - + - + -
bce 703 - + + - + - - + -+ -
ade 640 + - - + + - - + - - -3
bde 67.9( - + - + o+ - 4+ + o+ - -+
cde 659 - - + + + - - +

abcde 68.0| + + + o+ + o+ o+ o+ o+ o+ +

704- 72.1- 70.4+ ...+68.0)°

16
= 52563, SSE = 10.240, SSAB = 1.563, SSAC = 7.563, SSAD =.090, SSAE = 4.203, SSBC
=2.103, SSBD =.010, SSBE = .123, SSCD = .010, SSCE = .063, SSDE = 4.840, Error SS=
sum of two factor SS's = 20.568, Error MS=2.057, F,,,, =10.04, so only the D main

effect issignificant.

Thus SSA= ( = 2.250, SSB =7.840, SSC = .360, SSD

Supplementary Exercises

50.
Source Df SS MS f
Treatment 4 14.962 3741 36.7
Block 8 9.696
Error 32 3.262 102
Total 4 27.920
MSTr

H,:a, =a, =a; =a, =a, =0 will bergectedif f =

S F =267.
< 05,432

Because 36.7 3 2.67, H, isrejected. We conclude that expected smoothness score does
depend somehow on the drying method used.
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51.
Source Df SS MS f
A 1 322.667 322.667 980.38
B 3 35.623 11.874 36.08
AB 3 8557 2852 867
Error 16 5.266 329
Total 23 372113
Wefirst test the null hypothesis of no interactions (H, 9y = O forall,j). Howill be
: MSAB .
rejected at level .05if f, 5 = ME 3 Fysau6 = 3.24. Because 867 3 324, H,is
rejected. Because we have concluded that interaction is present, tests for main effects are not
appropriate.
52. Let Xij = the amount of clover accumulation when theit" sowi ngrateisusedin thejth plot =

m+a; +b, +g;. H;:a, =a, =a, =a, =0 will bergectedif

f= I\'\//Ilz ¥ Fai10-93-1 = Fosse =386
Source Df SS MS f
Treatment 3 3,141,1535 1,040,751.17 228
Block 3 19,470,550.0
Error 9 4,141,165.5 460,129.50
Total 15 26,752,869.0

Because 2.28 < 3.86, H, is not rejected. Expected accumulation does not appear to depend

on sowing rate.
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53. Let A = spray volume, B = belt speed, C = brand.

Condition Total 1 2 Contrast SS= 1%1;3;91
@ 76 129 289 592 21,904.00
A 53 160 303 22 30.25
B 62 143 13 48 144.00
AB 98 160 9 134 1122.25
C 83 -23 31 14 12.25
AC 55 3% 17 -4 1.00
BC 59 -33 59 -14 12.25
ABC 101 42 75 16 16.00

The ANOVA tableisasfollows:

Effect Df MS f
A 1 30.25 6.72
B 1 144,00 32.00

AB 1 1122.25 249.39
C 1 1225 272

AC 1 1.00 2

BC 1 1225 272

ABC 1 16.00 356

Error 8 450

Total 15

Fos1s = 5.32, soall of the main effects are significant at level .05, but none of the
interactions are significant.
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54, We use Y ates' method for calculating the sums of squares, and for ease of calculation, we
divide each observation by 1000.
Condition Total 1 2 Contrast SS= M
(@] 231 66.1 2135 317.2 -
A 430 1474 103.7 202 51.005
B 714 70.2 245 446 248.645
AB 76.0 335 -43 -12.0 18.000
C 37.0 199 813 -109.8 1507.005
AC 332 46 -36.7 -28.8 103.68
BC 170 -38 -15.3 -118.0 17405
ABC 16.5 -5 33 186 43245

We assume that there is no three-way interaction, so the M SABC becomes the M SE for

ANOVA:
Source df MS f
A 1 51.005 1179
B 1 248.645 5.750*
AB 1 18.000 <1
C 1 1507.005 34.848*
AC 1 103.68 2.398
BC 1 17405 40.247*
Error 1 43.245
Total 8

With F 5,4 = 5.32, the B and C main effects are significant at the .05 level, as well asthe

BC interaction. We conclude that although binder type (A) is not significant, both amount of
water (B) and the land disposal scenario (C) affect the leaching characteristics under study.,
and there is some interaction between the two factors.
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Effect
Effect % Ilron 1 2 3 Contrast SS
7 18 37 174 684
A 11 19 137 510 144 1296
B 7 62 169 50 36 81
AB 12 75 341 oY 0 0
C 21 79 9 14 272 4624
AC 41 20 41 22 32 64
BC 27 165 47 2 12 9
ABC 48 176 47 -2 -4 1
D 28 4 1 100 336 7056
AD 51 5 13 172 44 121
BD 33 20 11 32 8 4
ABD 57 21 11 0 0 0
CD 70 23 1 12 72 324
ACD 9%5 24 1 0 -32 64
BCD 77 25 1 0 -12 9
ABCD 929 2 -3 -4 -4 1
We use estimate zcogﬁ when n =1 (see p 472 of text) to get
1, =£=&=9.00, b, =§: 2.25,d, 2&:17.00,
2 16 16 16
U = U = U =
G, =0 = 21.00. similaly, Fb? =0,&d® =200, &g =275,
16 (53] @1 @11
Had =75 B - Rigd =
8 d= —.75,8 g= =.50, andg g= =4.50.
%11 %11 %151
20 — “D
a C
% 10 — . A
* CD
0o— = < )
2 : 0 1 2
z-percentile

The plot suggests main effects A, C, and D are quite important, and perhaps the
interaction CD aswell. (See answer section for comment.)
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56. The summary quantities are:
j
X, 1 2 3 X;..
1 6.2 40 58 16.0
i 2 7.6 6.2 6.4 20.2
X 138 102 122 X =362
o =302 43,6813, SSSX;, = 45.560, so

SST =45.560- 43.6813=1.8787,

225.24 (16.0)* +(20.2)?

SSE = 45.560 - =.5120, SSA=

- CF =.5880,

(13.8) +(10.2)* +(12.2)?
10
and by subtraction, SSAB =.128

SB= - CF =.6507,

Anal ysis of Variance for Average Bud Rating
Sour ce DF SS MS F

Heal t h 1 0. 5880 0. 5880 27.56
pH 2 0. 6507 0. 3253 15. 25
I nteraction 2 0. 1280 0. 0640 3.00
Error 24 0.5120 0.0213

Tot al 29 1.8787

Since3.00isnot 3 F,,, =3.40, wefail to reject the no interactions hypothesis, and we

continue: 27.563 F,,, =4.26,and 15.253% F ,,, = 3.40, so we conclude that
both the health of the seedling and its pH level have an effect on the average rating.
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57. The ANOVA tableis:

Source df SS MS f Fo1
A 2 34,436 17,218 436.92 549
B 2 105,793 52,897 1342.30 549
C 2 516,398 258,199 6552.04 549
AB 4 6,868 1,717 4357 411
AC 4 10,922 2,731 69.29 411
BC 4 10,178 2545 64.57 411
ABC 8 6,713 839 21.30 326
Error 27 1,064 39
Total 53 692,372

All calculated f values are greater than their respective tabled values, so al effects, including
the interaction effects, are significant at level .01.

58.

Source df SS MS f Fos
A(pressure) 1 6.94 6.940 11.57* 426
B(time) 3 561 1.870 3.12* 301
C(concen.) 2 12.33 6.165 10.28* 340
AB 3 4.05 1350 225 301
AC 2 732 3.660 6.10* 340
BC 6 15.80 2633 4.39* 251
ABC 6 437 728 121 251

Error 24 14.40 .600

Total 47 70.82

There appear to be no three-factor interactions. However both AC and BC two-factor
interactions appear to be present.

59. Based on the p-valuesin the ANOVA table, statistically significant factors at the level .01 are
adhesive type and curetime. The conductor material does not have a statistically significant
effect on bond strength. There are no significant interactions.
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60.
Source df SS MS f Fos
A (diet) 2 18,138 9.69.0 28.9* » 3.32
B (temp.) 2 5,182 2591.0 8.3 » 3.32
Interaction 4 1,737 4343 14 » 2.69
Error 36 11,2901 3136
Total a4 36,348

Interaction appears to be absent. However, since both main effect f values exceed the
corresponding F critical values, both diet and temperature appear to affect expected energy
intake.

- o 1 X?
61. SSA= é é_ (Xi.__ - X )2 ZNSXE_._ - W , With similar expressions for SSB, SSC,
i
and SSD, each having N — 1 df.
2

X
SST = é. é (Xij(kl) - X )2 :é é Xi?(kl) - W with N — 1 df, leaving
i i

N?-1- 4(N - 1) df for error.

1 2 3 4 5 Sx?
X 48 446 464 468 434 1,053,916
X, 470 451 440 482 451 1,053,626
X, 372 429 484 528 481 1,066,826
X, 340 417 466 537 534 1,080,170

Also, SSX’, = 220,378, X = 2294, and CF = 210,497.44

Sour ce df SS MS f Fos
A 4 285.76 71.44 5% 384
B 4 227.76 56.94 A73 384
C 4 2867.76 716.94 5.958* 384
D 4 5536.56 1384.14 11.502* 384
Error 8 962.72 120.34
Total 24

Hoa and Hyg cannot be rejected, while while Hyoc and Hop are rejected.



CHAPTER 12

Section 12.1

a. Stemand Leaf display of temp:

17|10

17|23 stem =tens
17|445 leaf = ones
17|67

17|
18,0000011
18/2222
18445

18

6
188

180 appearsto be atypical valuefor thisdata. The distribution isreasonably symmetric
in appearance and somewhat bell-shaped. The variation in the dataisfairly small since
the range of values ( 188 — 170 = 18) isfairly small compared to the typical value of 180.

0000 stem = ones
3 leaf = tenths

[((SEI\SEISESESENSE _N_N_N _N _Ne)
|
=

00

For theratio data, atypical valueisaround 1.6 and the distribution appearsto be
positively skewed. The variation in the datais large since the range of the data (3.08 - .84
=2.24) isvery large compared to the typical value of 1.6. The two largest values could
be outliers.

b. Theefficiency ratio isnot uniquely determined by temperature since there are several
instances in the data of equal temperatures associated with different efficiency ratios. For
example, the five observations with temperatures of 180 each have different efficiency
ratios.
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c. A scatter plot of the data appears below. The points exhibit quite abit of variation and do
not appear to fall closeto any straight line or simple curve.

3 - w ®
®
®
8 5 o
= ®
: .ot
»
« »w o
]
1 - [ L'
" m®
T T T
170 180 190
Temp:

Scatter plots for the emissions vs age:

Baseline
Reformul

With this data the relationship between the age of the lawn mower and its NO, emissions
seems somewhat dubious. One might have expected to see that as the age of the lawn mower
increased the emissions would also increase. We certainly do not see such a pattern. Age
does not seem to be a particularly useful predictor of NOy emission.
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A scatter plot of the data appears below. The pointsfall very closeto astraight line with an
intercept of approximately 0 and a slope of about 1. This suggests that the two methods are
producing substantially the same concentration measurements.

220 —

& 120

20 —

a

Box plots of both variables:

BOD mass loading

T
100

T
150

T
150

T
200

BOD mass removal

On both the BOD mass |oading boxpl ot and the BOD mass removal boxplot there are 2

outliers. Both variables are positively skewed.
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b. Scatter plot of the data:

BOD mass loading (X) vs BOD mass removal (y)

90 — °
80 —
a
70 —
60 —
50 —
>
40 —
30 — -
[ ]
20 — »
a
10 — ~ L a
L |
o —
T T T T
0 50 100 150

Thereisastrong linear relationship between BOD mass loading and BOD mass removal.
Asthe loading increases, so doesthe removal. The two outliers seen on each of the
boxplots are seen to be correlated here. Thereis one observation that appears not to
match the liner pattern. Thisvalueis (37, 9). One might have expected alarger value for
BOD massremoval.

a. Thescatter plot with axesintersecting at (0,0) is shown below.

Temperature (x) vs Elongation (y)

250 — L]

200 — []

150 —

100 —

50 —
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b. The scatter plot with axesintersecting at (55, 100) is shown below.

Temperature (X) vs Elongation (y)

250 — L]

200 — L}

150 —

100 —

c. A parabolaappearsto provide agood fit to both graphs.

There appearsto be alinear relationship between racket resonance frequency and sum of
peak-to-peak acceleration. Asthe resonance frequency increases the sum of peak-to-peak
acceleration tends to decrease. However, thereis not a perfect relationship. Variation does
exist. One should also notice that there are two tennis rackets that appear to differ from the
other 21 rackets. Both have very high resonance frequency values. One might investigateif
these rackets differ in other ways aswell.

a My = 1800 +1.3(2500) = 5050
b. expected change=slope= b, =1.3

expected change = 100b, =130

o

e

expected change = - 100b, = - 130
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M50 = 1800 +1.3(2000) = 4400, and s =350, so P(Y > 5000)

- p& 5 2000° 4006 _ 15 1 71)= 0436
350
e (4]

Now E(Y) = 5050, so P(Y > 5000) = P(Z >.14) = .4443

E(Y, - Y,) = E(Y,) - E(Y,) =5050- 4400 = 650, and
V(Y, - Y,) =V(Y,) +V(Y,) = (350)" +(350)* = 245,000, so the s.d. of
Y, - Y, =494.97.
100- 650 &
ThusP(Y, - Y, >0) = P&z > — 2= p(z > 71) =.2389
e 49497 g
The standard deviation of Y, - Y; = 494.97 (fromc), and
E(Y, - Y,) =1800+1.3x, - (1800+1.3x,) =1.3(x, - x,). Thus
® - 1.3(x - x)é
P(Y, >Y,)=P(Y,- Y, >0) =P¢z>——2_"1%= 05 implies that
(Y, >Y) Y- Y, ) g 49497 g p
- 1'3(X2 B Xl)
494.97

- 1.645 so X, - X =626.33.

b1 = expected change in flow rate (y) associated with aone inch increase in pressure
drop (x) = .095.

We expect flow rate to decrease by 5b, =.475.
My = - .12 +.095(10) =.83, and M., = - .12 +.095(15) =1.305.

p(y > 835) = P& >-5°° 8300 _ o7 5 50) = 4207

e 025 g
P(y >.840) = p& > 340~ 8300
e

= P(z > .40) = .3446
025 g

Let Y1 and Y, denote pressure drops for flow rates of 10 and 11, respectively. Then
My, =.925, soY; - Y, has expected value .830 - .925 = -.095, and s.d.

J(025)% +(025)° =.035355. Thus

& +.095 ¢
P(CY, >Y,)=P(Y, - Y, >0) =Pcz>——==P|Z > 2.69) =.0036
Vy 2) M-Y, ) g 035355 5 ( )

356



10.

11.

Chapter 12: Simple Linear Regression and Correlation

Y has expected value 14,000 when x = 1000 and 24,000 when x = 2000, so the two

- 85004 - 17,5006

probabilities become Pgaz > 9 .05 and PE% > =00 .10. Thus

e S (4] e S (4]
- 8500 - 17,500

=-1.645 and ————— = - 1.28. Thisgivestwo different valuesfor S ,a
S S

contradiction, so the answer to the question posed is no.
a b, = expected change for aone degreeincrease = -.01, and 10b, = - .1 isthe

expected change for a 10 degree increase.
b. My = 5.00- .01(200) = 3, and M., = 2.5.

c. The probability that the first observation isbetween 2.4 and 2.6 is

4-25 2.6- 2.5¢
P4£Y £26)= Pé?'—E 7z g2 220
e .07/5 075 g

= P(- 133£Z £ 1.33) =.8164 . The probability that any particular one of the other
four observationsis between 2.4 and 2.6 is also .8164, so the probability that all five are

between 2.4 and 2.6 is (.8164)° = .3627 .

d. LetY;and Y, denotethetimesat the higher and lower temperatures, respectively. Then
Y1- Y, has expected value 5.00- .01(x +1)- (5.00- .01x) = - .01. The standard

deviction of Y1 - Y, is y/ (075)° +(075)° =.10607. Thus

o - (- 01)s_ _
P(Y,- Y, >0) = sz > —oa07 o P(z >.09) = .4641.
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Section 12.2
12.
2
a S, =390095- M = 20,002.929,
S,, = 25825- M =13047.714; b, ==~ = 13047.714 _
14 S, 20,002.929
60 = Sy - b, = 346- ('652)(517) =.626, so the equation of the least squares

n 14
regressionlineis y = .626 +.652X .

b.  Yss) =.626+.652(35) = 23.456. Theresidual is
y- §=21- 23.456 = - 2.456.

2
c. S, =17,454- & =8902.857, so
W 14

SSE = 8902.857 - (.652)(13047.714) = 395.747.

oo [SE_ \/395.747
n- 2 12

=5.743.

d SST =S, =8902.857; r’=1- S =1- 395747 _ .956
SST 8902.857

e.  Without the two upper ext reme observations, the new summary values are

n =12,Sx = 272,Sx* =8322, Sy =181,Sy?* = 3729, Sxy =5320. Thenew
S, =2156.667,S,, =998.917,S,) =1217.333. New 61 =.56445 and

b, =2.2891, which yields the new equation y = 2.2891+ .56445x . Removing
the two values changes the position of the line considerably, and the slope slightly. The
311.79
2

newr<=1-
998.917

observations.

=.6879, which ismuch worse than that of the original set of
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For thisdata, n=4, SX, =200, Sy, =5.37, Sx* =12.000, Sy” = 9.3501,

2
Sxy, =333. S, =12,000- @ = 2000,

2
S,, =9.3501- @ = 2.140875, and S, = 333- (200(537) _ g4 &
.S .
b, =—2= 43 _ 43925 and b, = EEI (.03225)@ = - .27000.
S, 2000 4 4

SE=S, - b,S, =214085- (03225)64.5) =.060750.

r’=1- E =1- 060750 =.972. Thisisavery highvalueof I ?, which confirms

SST 2.14085

the authors' claim that thereis astrong linear relationship between the two variables.

a n=24, Sx =4308, Sy, =40.09, Sx* = 773790, Sy’ =76.8823,
(4308)°

Sxy, =7,243.65. S_=773,790 - =504.0,
2

S,, = 76.8823- % =99153, and

S, =7,243.65- M =45.8246 . p, = Sy _45.8246 = 09092 and
24 S 504

60 = % - (09092)7 = - 14.6497 . The equation of the estimated regression

lineis y = - 14.6497 +.09092X .

b. Whenx=182, § = - 14.6497 +.09092(182) = 1.8997 . So when the tank
temperature is 182, we would predict an efficiency ratio of 1.8997.

c. Thefour observationsfor which temperatureis 182 are: (182, .90), (182, 1.81), (182,
1.94), and (182, 2.68). Their corresponding residuasare: .90 - 1.8997 = - 0.9977 ,
1.81- 1.8997 =-0.0877, 1.94- 1.8997 = 0.0423, 2.68- 1.8997 = 0.7823.
These residuals do not all have the same sign because in the cases of the first two pairs of
observations, the observed efficiency ratios were smaller than the predicted value of

1.8997. Whereas, in the cases of the last two pairs of observations, the observed
efficiency ratios were larger than the predicted val ue.

d. SE=S, - b,S, =9.9153- (09092)(45.8246) = 5.7489.

r2=1- SE =1- >.7489 =.4202 . (42.02% of the observed variation in

SST 9.9153
efficiency ratio can be attributed to the approximate linear relationship between the
efficiency ratio and the tank temperature.)
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Thefollowing stem and leaf display showsthat: atypical valuefor this dataisanumber
inthelow 40’s. there is some positive skew in the data. There are some potential outliers
(79.5 and 80.0), and thereis areasonably large amount of variation in the data (e.g., the
spread 80.0-29.8 = 50.2 islarge compared with the typical valuesinthelow 40’s).

9

33 stem = tens
5566677889 leaf = ones
1223

56689

1

N

9
0

O ~N~N OO oD D WWwN

No, the strength values are not uniquely determined by the MoE values. For example,
note that the two pairs of observations having strength values of 42.8 have different MoE
values.

The least squareslineis § = 3.2925 +.10748X . For abeam whose modulus of
elasticity isx = 40, the predicted strength would be
Yy =3.2925+ .10748(40) =7.59. Thevaluex =100 isfar beyond the range of the x

valuesin the data, so it would be dangerous (i.e., potentially misleading) to extrapol ated
thelinear relationship that far.

From the output, SSE = 18.736, SST = 71.605, and the coefficient of determinationisr? =
738 (or 73.8%). Ther? valueislarge, which suggests that the linear relationshipisa
useful approximation to the true rel ationship between these two variables.
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Rainfall volume (x) vs Runoff volume (y)

T T
0 50 100
X

Y es, the scatterplot shows a strong linear relationship between rainfall volume and runoff
volume, thusit supports the use of the simple linear regression model.

2
X =53.200, y = 42.867, S, = 63040- % =20,586.4,
2
S,, =41999- (68) 144357, ana
.S
S, =51232- (798)643) _ 17 0244, 5, = = 170244 _ 49697 and
1 S, 20586.4

b, = 42.867- (.82697)53.2 = - 1.1278.

Mg = - 11278 +.82697(50) = 40.2207 .

SE=S, - b,S, =14,435.7- (82697)17,324.4) = 357.07.

. SSE 357.07
s=s = :\/ =524 .
n- 2 13
rz=1- =1 357.07 = .9753. S0 97.53% of the observed variation in

SST 14,435.7
runoff volume can be attributed to the simple linear regression relationship between
runoff and rainfall.
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Note: n =23 inthisstudy.

a. Foraone(mg/cn?) increasein dissolved material, one would expect a.144 (g/l) increase
in calcium content. Secondly, 86% of the observed variation in cal cium content can be
attributed to the simple linear regression relationship between cal cium content and
dissolved material.

b. M, = 3.678+.144(50) =10.878

c. r?=.86=1- % so SSE = (SST)(1- .86) =(320.398)(.14) = 44.85572.

=1.46

SSE \/44.85572
Then S= =
n-2 21

LB _15(987.645)- (1425)(10.68) _ - 404.3250 _ 00736023
" 15(139,037.25)- (1425  54,933.7500
_ 10.68- (- .00736023)(1425)
15

=1.41122185, y =1.4112 - .007360x.

b,

A

b. b, =-.00736023

A

c.  Withx now denoting temperaturein 0OC, y = b, + t;l x+322

(%)

&%

= (60 + 3261)+ % b,x=1.175695- .0132484x, sothenew b, is-0132484 and

thenew b, =1.175695.

A

Using the equation of a, predicted Yy = b, + bl(ZOO) =-.0608, but the deflection
factor cannot be negative.

o
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N=14, Sx = 3300, Sy, =5010, Sx* = 913750, Sy” = 2,207,100,
Sx y, =1,413,500

a

o

5 = 3256,000
' 1,902,500
y = - 455519 +1.7114x.

=1.71143233, 60 = - 4555190543, so we use the equation

Mypps = - 45.5519 +1.7114(225) = 339.51

Estimated expected change = - 5061 =-85.57

No, the value 500 is outside the range of x values for which observations were available
(the danger of extrapolation).

b, =.3651, b, =.9668
.8485
$ =.1932

SST = 1.4533, 71.7% of this variation can be explained by the model. Note:
SSR _1.0427

SST 14533

= .717 which matches R-squared on output.

The summary statistics can easily be verified using Minitab or Excel, etc.

4914
744.16

b, = 66034186, b, = - 2.18247148

predicted y = b, + b, (15)=7.72

s = b, +b,(15)=7.72
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b, = 204325 _ 44736003, b, =1.41122185,

' T5403375
SSE = 7.8518- (1.41122185)(10.68)- (- .00736023)(987.654) = .049245,
52 =949295 _ 133788 and § = s =.06155
13
2
b. SST =7.8518- (068) _ 24764 sor2 =1- 229245 _ 1 199 = 801
15 24764

a. Usingthe Y;'S givento onedecimal place accuracy isthe answer to Exercise 19,

SSE = (150 - 125.6)° +...+ (670 - 639.0)° =16,213.64. The computation

formula gives

SSE = 2,207,100 (- 45.55190543)(5010) - (1.71143233)(1,413,500)
= 16,205.45

16,205.45 _ 961

5010)*
414,235.71

b. SST =2,207,100 - (T =414,23571sor* =1-

1200 —

> 700 H

200 —
T T T
0 50 100

X

According to the scatter plot of the data, a simple linear regression model does appear to
be plausible.

b. Theregression equationisy = 138 + 9. 31 x

The desired valueis the coefficient of determination, I 2 =99.0% .

d. Thenew equationisy* = 190 + 7.55 x*.  Thisnew equation appearsto differ

significantly. If we wereto predict avalue of y” for X = 50, the value would be 567.9,
where using the original data, the predicted value for x = 50 would be 603.5.
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Sy, - 618>g
n

(SYi - 61SXi )

n
equations yields
n

Substitution of 60 = and 61 for by and by on the left hand side of the normal

+ 518Xi = Sy, from thefirst equation and
Sy, - b,5x ] - Sy, by{nsSx? - (sx)?
SXI (Sy| blsxl )+ b18X_2 - SX|Sy| + l(n Xi ( |) )
n ' n n
SXSY: |, NSXyY: S,
n n n

= SX Y, from the second equation.

We show that when X is substituted for x in b, + b, X, ¥ results, so that (Y, _) ison the

%’i - blsxi
n

liney=b,+b,x: b, +b,X = +b,X=V- b,X+b,X=7Y.

Wewish to find by tominimize S(y, - b, )* = f(b,). Equating f (b, ) to 0 yields

2S(y, - bx )(- x) =0 so Sx y, :b18Xi2 and b, = SX'? . Theleast squares
~ ~ Y.
estimator of b, isthus b, = % =
S

a.  Subtracting X fromeach X; shiftstheplotinarigid fashion X units to the left without

otherwise altering its character. Thelast squaresline for the new plot will thus have the
same slope as the one for the old plot. Sincethe new lineis X unitsto the left of the old

one, the new y intercept (height at x = 0) isthe height of theold lineat x = X , whichis
b, + b,X =¥ (sincefrom exercise 26, ()_(, Y)ison theold line). Thusthenewy
interceptis Y .

b. Wewish by and b; to minimizef(bo, by) = Sy, - (b, +b,(x - X))]*. Equating 1?—;
0

to % to Oyields nby, +b,S(x, - X) = Sy,, b,S(x - X)+b,S(x, - X)°

=5(x - X)* =[x - X)y,. since S(x - X)=0, b, =y, andsince )
S(x - X}y, =S{x - XNy, - ¥) [ because S(x - X)y =S(x - X)1, b, =b,.

~

Thus by =Y and b, = b,.
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For dataset #1, r* = 43 and S = s= 4.03; whereas these quantities are .99 and 4.03 for #2,
and .99 and 1.90 for #3. In general, one hopes for both large r? (large % of variation
explained) and small s (indicating that observations don’t deviate much from the estimated
line). Simplelinear regression would thus seem to be most effectivein the third situation.

Section 12.3

30.

31

2
) )— (35—0) =.0175 and the standard

S(x - x)* =7,000,000,soV|b, |=
2 S(x- %) V5, 7,000,000
deviation of 61 is+.0175 =.1323.

- 0-12 15-1.25;
b, PLOE B, £15)=pB 1B g 7 g 107 1259
& 1323 1323 g

= P(- .89 £ Z £1.89) =.9412.

c. Althoughn=11hereandn=7ina, S(Xi - )_()2 =1100,000 now, which issmaller

than ina. Because this appearsin the denominator of V(Bl) , thevarianceis smaller for
the choice of x values ina.

a b, =-.00736023, b, =1.41122185, so
SSE = 7.8518- (1.41122185)(10.68) - (- .00736023)(987.645) = .04925,

2
s* =.003788, s=.06155. S ¢ = > - 005768 _ .00000103,

b sx?- (Sx ) /n  3662.25
S, =S; =esimatedsd.of b, =+/00000103 =.001017.

b,

b. - .00736%(2.160)(.001017) = - .00736 +.00220 = (- .00956,- .00516)
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32. Let b1 denote the true average change in runoff for each 1 m® increasein rainfall. To test the
hypotheses H, : b, =0 vs. H, : b, * O, thecalculated t statistic is
_ b, _.82697

= 22.64 which (from the printout) has an associated p-value of P=

s. .03652

by
0.000. Therefore, sincethe p-valueisso small, H, isrejected and we conclude that thereisa
useful linear relationship between runoff and rainfall.

A confidenceinterval for b, isbased on n—2=15- 2 = 13 degrees of freedom.
t o513 = 2.160, sotheinterval estimateis

A

b, %t g5, %5, =.82697 + (2.160)(03652) = (.748,.906) . Therefore, we can be

confident that the true average change in runoff, for each 1 m? increase in rainfall, is
somewhere between .748 m?® and .906 nr'.

33.
a. Fromthe printout in Exercise 15, theerror d.f. = n—2=25, t ,c s = 2.060. The

confidence interval isthen
b, 1 gpn5 >5; =.10748+ (2.060)(.01280) = (.081,.134). Therefore, we

estimate with a high degree of confidence that the true average changein strength
associated with a1l Gpaincrease in modulus of elasticity is between .081 MPa and .134
MPa.

b. Wewishtotest H,: b, =.1vs H, :b, >.1. Thecalculatedt statisticis
_b,-.1_.10748- .1
S5, .01280

such as thiswould not lead to rejecting H,, so there is not enough evidence to contradict
the prior belief.

t = .58, whichyieldsap-value of .277. A large p-value

34.
a H,:b,=0;H_,:b,*0
RR: |t| >t , or |t| > 3.106

t =5.29: Rgect H,. The slopedifferssignificantly from 0, and the model appears to
be useful.

al/2,n-

b. Atthelevel @ = 0.01, rgject h, if the p-valueislessthan 0.01. In this case, the reported
p-value was 0.000, therefore reject H,. The conclusion is the same as that of part a.
c. H,:b,=15;H,:b,<15
RRt<-t, ,ort<-2718
0.9668- 1.5 , . . .
t=—— =-2.92: Rgect H,. Thedatacontradict the prior belief.
0.1829
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~ A

Wewanta95%Cl forby, by £t 5,5 XS, . First, weneed our point estimate, b, .
e 1

(222.1)?

Using the given summary statistics, S, = 3056.69 - =155.019,

S, = 2759.6- (2222)19) _ 535115 ang b, = Sy (2B12 ) e
S, 115019
Weneed b, = 103- (1.536)(222.) = - 8.715 to calculate the SSE:

17
SSE = 2975- (- 8.715)(193) - (1.536)(2759.6) = 418.2494 . Then

s= 1/% =528 and s; I% =.424. witht ;. =2.131, our

Clis 1.536 + 2.131.424) = (632, 2.440). With 95% confidence, we estimate that

the change in reported nausea percentage for every one-unit change in motion sickness
doseis between .632 and 2.440.

We test the hypotheses H, :b; =0 vs H, 1 b; * O, and thetest statistic is

t= % = 3.6226. With df=15, the two-tailed p-value = 2P( t > 3.6226) = 2( .001)

=.002. With ap-value of .002, we would reject the null hypothesis at most reasonable
significance levels. This suggeststhat thereisauseful linear relationship between
motion sickness dose and reported nausea.

No. A regression model isonly useful for estimating values of nausea % when using
dosages between 6.0 and 17.6 — the range of values sampled.

Removing the point (6.0, 2.50), the new summary statsare: n=16,,Sx, = 216.1,
Sy, =1915, Sx* =3020.69, Sy’ = 2968.75, Sx Y, =2744.6, and then
b, =1.561, b, = - 9.118, S5 = 4305264, $=5.55, 5, = 551, and the new Cl

is1.561+ 2.145><(.551) ,or (.379,2.743). Theinterval isalittlewider. But

removing the one observation did not change it that much. The observation does not
seem to be exerting undue influence.
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a. A scatter plot, generated by Minitab, supports the decision to use linear regression
analysis.
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mist droplets
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fluid flow velocity

b. Weareasked for the coefficient of determination, r’. From the Minitab output, r? = .931
(whichiscloseto the hand calculated val ue, the difference being accounted for by
round-off error.)

c. Increasing x from 100 to 1000 means an increase of 900. If, asaresult, the averagey
.6
were to increase by .6, the slope would be % =.0006667 . We should test the

hypotheses H : b, =.0006667 vs. H, : b, <.0006667 . Thetest statisticis

.00062108 - .0006667 L _ :
t= =-.601, which is not significant. Thereisnot
.00007579

sufficient evidence that with an increase from 100 to 1000, the true average increase in y
islessthan .6.

d. Weare asked for aconfidenceinterval for D, . Using the values from the Minitab
output, we have .00062108 + 2.776(.00007579) = (.00041069,.00083147)
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a n=10, Sx = 2615, Sy, =39.20, SX* =860,675, Sy* = 161.94,

Sxy, =114535,s0 b, = 12027 _ o6g00s8, b, = 2.14164770  from
1,768,525
which SSE = .09696713, s=.11009492 S=.11009492 £.110=5S ,
S . = & =.000262

S5, J176,852

b. Wewishtotest H, : b, =.0060 vs H, : b; 1 .0060. Atlevel .10, H, isrejected if
either t3 t, o =1.860 or t £-t;, =-1.860. Since
[ = .0068- .0060

=3.06 3 1.1860, H, isrejected.
.000262

a. From Exercise 23, which aso refersto Exercise 19, SSE = 16.205.45, so

s* =1350.454, $=36.75, and s;, = .75~ 0997, Thus
1 368.636
1.711
= _0997 =17.2>4.318 =t 334514, S0 p-value < .001. Becausethe p-value< .01,

H, : b, =0 isrejected at level .01 in favor of the conclusion that the model is useful

(b, * 0).

b. TheCl.for b, is1.711 (2.179)(.0997) =1.711+.217 =(1.494,1.928). Thus
theCll.for 10b, is (14.9419.28).

SSE = 124,030.58— (72.958547)(1574.8) — (.04103377)(222657.88) = 7.9679, and SST =
30.828

Source af SS MS f
Regr 1 31.860 31.860 180
Error 18 7.968 177
Total 19 30.828

Let'susea =.001. Then F,,,4 =15.38<18.0,s0 H, : b, =0 isrejected and the

model isjudged useful. S=+/1.77 =1.33041347, S, =18,921.8295, so

(= .04103377
1.33041347/4/18,921.8295

= 4.2426, and t? = (4.2426)° =18.0= f .
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AR Elsy, - 6,5x)

We use the fact that b, isunbiased for b,. E(b0
n
_ E(?Ji)_ el )k = E(iYi)_ b.x

=M_ b,Xx=b,+b,X- b,Xx=b,
n

a Letc=nSx?- (Sx)°. Then E(Al) :%E[nSxiYi...Yi - (sx)..(sx)(sY)]
= 28 XE(Y)- =& E(Y) =28 (b, +bux)- =4 (b, +bix)
s - (sxF=b,

b. with c =S(x - X)*, b, :%S(x - )Y, - V):%S(x - X)Y. (since
S(x - X)¥ = YS(x, - i)=\7>0=0),sov(61)=c—128(xi - x)Var(Y,)
=S T s e e

t= bl . The numerator of 61 will be changed by the factor cd (since

SX; )(Syi ) appear) while the denominator of 61 will change by the factor

—

both Sx; Yy, and
¢? (since both SXI-2 and (SXi )2 appear). Thus 61 will change by the factor % Because

SE=S(y, - ¥, )2, SSE will change by the factor d2, so swill change by the factor d.

. . : _ d_c
Since «/— int changes by the factor c, t itself will change by —Xa =1, or not at all.
C

| o a14
The numerator of dis|1—2| = 1, and the denominator is —— =.831, so
A/324.40
1
d= e =1.20. The approximate power curveisfor n—2df =13, and b isread from

Table A.17 as approximately .1.
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12.4

The mean of the x datain Exercise 12.15is X = 45.11. Sincex =40iscloser to 45.11
than isx = 60, the quantity (40 - X)2 must be smaller than (60 - X)z. Therefore,

since these quantities are the only onesthat are different inthetwo S; values, the S;
valuefor x = 40 must necessarily be smaller than the S; for x =60. Said briefly, the

closer x isto X , the smaller the value of Sg,.

From the printout in Exercise 12.15, the error degrees of freedom isdf = 25.
t 02505 = 2.060, sotheinterval estimatewhen x =40is: 7.592 £ (2.060)(. 179)

7.592 +.369 = (7.223,7.961). We estimate, with a high degree of confidence, that

the true average strength for all beams whose MoE is 40 GPais between 7.223 MPaand
7.961 MPa.

From the printout in Exercise 12.15, s= .8657, so the 95% prediction interval is

§ £t e oo [S° +S2 = 7.592+ (2.060)/(.8657)7 + (.179)?

= 7.592 +1.821= (5.771,9.413). Note that the prediction interval is almost 5 times
aswide asthe confidenceinterval.

For two 95% intervals, the simultaneous confidence level isat least 100(1 — 2(.05)) =
9%

Wewishto find a90% Cl for Mq,: Y, = 78.088 , t g3 =1.734, and

2
Sy :5\/ 1 + (125' 140'895) =.3349 .Putting it together, we get

20 18,921.8295
78.088 +1.734(.3349) = (77.5073,78.6687)

Wewant a90% PI: Only the standard error changes:
2
Sy = s\/1+i + (125- 140.895) =1.3719,s0thePl is

20  18921.8295
78.088 +1.734(1.3719) = (75.7091,80.4669 )

Becausethex of 115 isfarther away from X than the previous value, the term

* p— 2
(X - X) will be larger, making the standard error larger, and thus the width of the
interval iswider.
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We would betesting to seeif the filtration rate were 125 kg-DS/m/h, would the average
moisture content of the compressed pellets be less than 80%. The test statisticis
.= 78.088- 80 _

-5.709, and with 18 df the p-valueis P(t<-5.709) ~ 0.00. We
.3349

would reject H,. Thereissignificant evidence to prove that the true average moisture
content when filtration rateis 125 is less than 80%.

46.

A 95%Cl for Myep0t Yiso) = - -311+(.00143)(500) = .40 and

2
ST A3 1—13+ (5(121 ;Z;S:j) =.03775 , sotheinterval is

Yiso0) £ tozsas Sy, =40+ 2.210(.03775) = .40+.08 =(.32,.48)

Thewidth at x = 400 will be wider than that of x = 500 because x = 400 is farther away
from the mean (X = 471.54).

c. A9%Clfor by:

A

b, %t gy, >5; =.00143+ 2.201(0003602) = (.000637,.002223)

Wewishtotest Hg : Yiso0) =25 vs. H 1 Y(o0) * -25. Thetest statisticis
t = 9(400) - .25

, and we reject H, if |t| 3 tgpsy = 2.201.
S)7(400)
Yiaoo) = - -311+.00143(400) = .2614 and

2
S5,y =13 1, (400- 47154F _ .0445 , so the calculated
(409 13 131,519.23
t= %‘4}525 =.2561, whichisnot 3 2.201, sowedo not reject Ho. Thissample
data does not contradict the prior belief.
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Yiao) = - 1.128+.82697(40) = 31.95, t e, = 2.160; a95% P! for runoff is

31,95+ 2.160,/(5.24)? + (1.44)? = 31.95+11.74 = (20.21,43.69). No, the

resulting interval isvery wide, therefore the available information is not very precise.

Sx = 798, Sx* = 63,040 which gives S, =20,586.4, whichinturn gives

Y= 15 20,586.4

40.22+ 2.160,/(5.24) + (L.358)? = 40.22+11.69 = (28.5351.92). The
simultaneous prediction level for thetwo intervalsis at least 100(1- 2a )% =90%.

2
S, = 5.24\/i +M =1.358, so the Pl for runoff when x =50is

2
S, =18.24 - (26) _ 60, S,, =40.968- (12:6)(27.68) _ 2.216;
2
S,, =93.3448 - (27.68)° =8213b, ==~ =2210 _ 3603
9 . .60
b, = Sy- b,SX_ 27.68- (3'9693)(12'6) = - 2.095, so the point estimate is
n
Yus) = - 2.095+3.693(1.5) = 3.445. SSE = 8.213- 3.693(2.216) =.0293,
SE _ [.0293
which yields S = = \/ =.0647. Thus
n- 2 7
1. (15-14)f
39(15) =.0647 5 +T =.0231. The95% ClI for n'l,,l_s is

3.445 + 2.365(.0231) = 3.445 + .055 = (3.390,3.50).

A 95% PI for y when x = 1.5 issimilar:
3.445+ 2.365,/(0647) +(0231)° = 3.445+.162 = (3.2833.607). The

prediction interval for afuturey value iswider than the confidence interval for an
average value of y when x is 1.5.

A new PI for y when x = 1.2 will bewider since x = 1.2 isfarther away from the mean
X=14.

374



49.

50.

51.

Chapter 12: Simple Linear Regression and Correlation

9B5%Cl: (462.1,597.7);  midpoint =529.9; t ,c s = 2.306;
529.9 +(2.306)(8; =597.7

b0+61(15))

626,05 = 29402
99% Cl: 529.9 + (3.355)(29.402) = (431.3,628.5)

A

S

=18.87349841, b, = - 8.77862227 , SSE = 2486.209, s = 16,6206

1, 11(18- 20.2909)°
11 3834.26
topse = 2.262, sothe Cl is 330.94 + (2.262)(16.6206)(.3255)

= 330.94+12.24 = (318.70,343.18)

(@Y
=

=.3255,

a b, +b,(18) =330.94, X = 20.2909, \/

1+ —+
11 3834.26

330.94 + (2.262)(16.6206)(1.0516) = 330.94 + 39.54 = (291.40,370.48).

=1.0516, sotheP..is

\/ 1 11(18- 20.2909)

c. Toobtain simultaneous confidence of at least 97% for the three intervals, we compute
each one using confidence level 99%, (with t o,z o = 3.250). For x = 15, theinterval is

274.32 + 22.35 =(251.97,296.67) . Forx=18,

330.94+17.58 = (313.36,348.52). Forx =20,
368.69+ 0.84 = (367.85,369.53).

a. 0.40iscloserto X .

b, +b,(0.40)t, ., , {3

0 or 0.8104 + (2.101)(0.0311)
= (0.745,0.876)

60+Bl(o.4o))

C. k;0 + t’)\1 (120) ita/2,n- 2 x\/Sz + 8260+61(]—20) or

0.2912 + (2.101)/(0.1049)? +(0.0352)? = (059,.523)
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a Wewishtotest H  :b, =0 vs H_:b; 1 0. Thetest statistic
{ = 10.6026

.9985
table A.8), and H, isrejected since the p-valueis smaller than any reasonable @ . The
data suggests that this model does specify a useful relationship between chlorine flow and
etch rate.

=10.62 leadsto ap-value of < .006 (2P(t > 4.0) from the 7 df row of

b. A 95% confidenceinterval for b, : 10.6026 + (2.365)(.9985) = (8.24,12.96). we

can be highly confident that when the flow rateisincreased by 1 SCCM, the associated
expected change in etch rate will be between 824 and 1296 A/min.

5 1 9(3.0- 2.667)*9
c. A95%CIfor My,: 38.256+ 2.36592.546\/§+ ( 550 ) N

%]
= 38.256 + 2.365(2.546)(.35805) = 38.256 + 2.156 = (36.100,40.412), or
3610.0t0 4041.2 A/min.

& 1 0- 266779
d. The95% Pl is 38.256 + 2.36592.546\/1+—+9(30 667) ;
9 5850 +

(%]
= 38.256 + 2.365(2.546)(1.06) = 38.256 + 6.398 = (31.859,44.655), or

3185.9t0 4465.5 A/min.

e. Theintervalsfor x* = 2.5 will be narrower than those above because 2.5 is closer to the
mean than is 3.0.

f.  No. avaueof 6.0isnot in the range of observed x values, therefore predicting at that
point is meaningless.

Choice awill be the smallest, with d being largest. aislessthanb and c (obviously), andb
and c are both smaller thand. Nothing can be said about the relationship betweenb and c.
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Thereisalinear pattern in the scatter plot, although the pot also shows areasonable
amount of variation about any straight line fit to the data. The simple linear regression
model provides a sensible starting point for aformal analysis.

n=141, Sx = 1185,Sx> =151825, Sy, =5960, Sy’ = 2,631,200, and

Sx Y, = 449,850, from which
b, = - 1.060132, b, = 515.446887, SSE = 36,036.93,

r2 =.616,s? =3003.08,s = 54.80,s. = 54.80

b [51523.21

H_ b, 0, t="LL . RejectH, atlevel 05if either t3 tgy,, = 2.179 or
S.
b,

=241 H,:b,=0vs

1

t£-2179. Wecaculate t = 221?0 =-4.39. Since - 439£-2179 H, is

rejected. The simple linear regression model does appear to specify auseful relationship.

A confidenceinterval for b, + b 1(75) isrequested. Theinterval is centered at

A 1. n(75- x)? _

b, +b,(75)=4359. s. . . =s|=+ """/ __=1483 -
ot l( ) Sbo+b1(75) S\/n + nSXiZ - (le )2 (using s

54.803). Thusa95% Cl is 435.9 +(2.179)(14.83) = (403.6,559.7).

X, =X, =12, yet y, 1 y,

100 —|
90 —
80 —
70 —
60 —| -
50 —
40 — L4

% damage

30 L u
20 —
10 —

Based on a scatterpl ot of the data, a simple linear regression model does seem a
reasonable way to describe the relationship between the two variables.
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2296

¢. b, =552=3284692, b, - 19.669528, y = - 19.67 + 3.285x

99

d. SSE=35634- (- 19.669528)(572)- (3.284692)(14,022) = 827.0188,

2
s? =82.70188,s=9.094.s. ., . =9.094 1, M =2.6308,
bo+b3(20) 12 8388

b, +b,(20) = 46.03, t 4y, = 2.228. ThePl is 46.03+ 2.228 [s? + s§0+61(20)

b
= 46.03+ 21.09 = (24.94,67.12).

(x- %08 (% - 3, _

A oA e 1
56. b, +bx=Y- b,X+b,x=Y+(x-X)o, ==Y + - L=sdy,
n nSXi - (Sxi)
X- X)X - X ~ ~
where d, = +%. ThusVal‘(b0 + blx): a d2Var(Y)=s 2Sd2,
N nSx - (Sxi)
which, after some algebra, yields the desired expression.
Section 12.5
57. Most people acquire alicense as soon as they become eligible. If, for example, the minimum
age for obtaining alicenseis 16, then the time since acquiring alicense, y, isusually related to
age by the equation y » X - 16, which isthe equation of astraight line. In other words, the
majority of peoplein asamplewill havey valuesthat closely follow theline y = X - 16.
58.

a  Summary values. SX = 44,615, Sx? = 170,355,425, Sy =3860,
Sy2 =1,284,450, Sxy =14,755,500, n =12. Usingthese values we calculate
S, =4,480,572.92, S, =42816.67,and S,, = 404,391.67. So

S
r=——>2_ = 9233

b. Thevalue of r does not depend on which of the two variablesislabeled asthe x variable.
Thus, had we let x = RBOT timeand y = TOST time, the value of r would have remained

the same.

c. Thevalue of r does no depend on the unit of measure for either variable. Thus, had we
expressed RBOT timein hoursinstead of minutes, the value of r would have remained
the same.
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Normal Probability Plot
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N: 12 P-value: 0.232

Both TOST time and ROBT time appear to have come from normally distributed
populations.

H : Reject H, at level .05 if either

r
r;=0vsH_ :rt0.t=—
' V1-r?

t3 1,600 =2228 or t £-2.228. r=.923,t=758, 50 H, should be rejected. The
model is useful.

(o]
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2 2
a S, ,=251970- % =40,720, S, =130.6074 - M = 3.033711,
and S, =5530.92- %{?792) = 339.586667, so
339.586667

=.9662 . Thereisavery strong positive correlation

r =
\/40,720~/3.033711
between the two variables.

b. Because the association between the variablesis positive, the specimen with the larger
shear force will tend to have alarger percent dry fiber weight.

c. Changing the units of measurement on either (or both) variables will have no effect on
the calculated value of r, because any change in units will affect both the numerator and
denominator of r by exactly the same multiplicative constant.

d. r2=(966) =.933

rvn- 2

1-r?

.966./16
\/1- .9662

The dataindicates a positive linear relationship between the two variables.

e H,:r =0vsH_:r >0.t= ; Reject H, at level .01 if

t3t,,,=2583. t= =14.943 2.583, so H, should berejected .

rvyn- 2
N1-r?

t3 tops,, =2.819 or t £ - 2.819. r=.5778,t =3.32, so H, should be rejected. There
appears to be anon-zero correlation in the population.

Ho:r =0OvsH, :rt0.t= ; Reject H, at level .01 if either

a  Wearetesting H, :r =0vsH_:r >0.
7377.704 7482412

r= =.7482,and t =
/36.9839./2,628,930.359 \1- 74822
reject Ho since t = 3.9066 3 t ,;,, =1.782. Thereisevidencethat apositive

=3.9066. we

correl ation exists between maximum lactate level and muscular endurance.

b. Wearelooking for r?, the coefficient of determination. r* = (.7482)* = .5598. Itisthe
same no matter which variable isthe predictor.
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a H,:r;,=0vsH,:r ! 0,ReectH, if; Reect H, at level .05if either
rvn-2 _ (4491/12
V1- 17 1- (449)°

reject Ho, the data does not suggest that the population correlation coefficient differs
from 0.

t3 top, =2.179 or t £-2.179 t = =1.74. Fail to

b. (.449)2 =.20 s0 20 percent of the observed variation in gas porosity can be accounted
for by variation in hydrogen content.

n=6 Sx =111.71 Sx? = 2,724.7643,Sy, = 2.9,Sy? =1.6572, and
Sx y, =63.915.

. (6)(63.915)- (111.71)(2.9) = 7720 H. i1, =0

J(6)(2,724.7943) - (111.73) /(6)(1.6572)- (2.9)°
vs H, : 1 1 O; Reject Ho at level .05if [t| 3 t 5, = 2.776.

772914
t= # = 2.436. Fail torgect H,. The data does not indicate that the
1- (.7729)
population correlation coefficient differsfrom 0. Thisresult may seem surprising due to the
relatively large size of r (.77), however, it can be attributed to a small sample size (6).

___ 7578423 | o
\/(3756.96)(465.34)
a v=5nE2 0. 650+ L645) _ =(- .976,- .3290),
1.573g
and the desired interval for is(- 751~ .318).
b. z= ( .652 + 549)«/2_3 = - .49, so H, cannot be rejected at any reasonable level.
c. r?=.328
d. Agan, r? =.328
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Although the normal probability plot of the X’ s appears somewhat curved, such a pattern
isnot terribly unusual when nissmall; the test of normality presented in section 14.2 (p.
625) does not reject the hypothesis of population normality. The normal probability plot
of they’s ismuch straighter.

H, :r, =0 will bergjectedinfavorof H_ : 1 1 O atlevel .01if
[t|® tooss =3.355. Sx =864, Sx = 78,142,Sy, =138.0, Sy} =1959.1 and

3992 _
=.91
(186.8796)(23.3880)

Sxy, =123224,s0r =

3 and

. .913(2.8284)

4080
relationship.

=6.332 3.355, sorgject Hy. There does appear to be alinear

We used Minitab to calculatether;’s: r; =0.192,r, =0.382, and r3 = 0.183. It appears
that thelag 2 correlation is best, but all of them are weak, based on the definitions given
in the text.

2 _ _ . .
—— =.2. Wergject H, if |ri | 3 2. Foral lags, r; does not fall in the rejection

/100

region, so we cannot reject H,. Thereis not evidence of theoretical autocorrelation at the
first 3lags.

If we want an approximate .05 significance level for the simultaneous hypotheses, we
would haveto use smaller individual significance level. If theindividual confidence
levels were .95, then the simultaneous confidence levels would be approximately
(.95)(.95)(.95) = .857.

Because p-value = .00032 < a =.001, H, should be rejected at this significance level.

Not necessarily. For thisn, thetest statistic t has approximately a standard normal
distributionwhen H_ 11, = 0O istrue, and ap-value of .00032 corresponds to

I/498
J1

suggests only aweak linear relationship between x and y, one that would typically have
little practical import.

z=3.60 (or-3.60). Solving 3.60 = - 1? forryieldsr = .159. Thisr

t=2.203 t 59905 =1.96, 0 H, isrejected in favor of Ha. Thevaluet=2.20is
statistically significant -- it cannot be attributed just to sampling variability in the case
r =0. Butwiththisn,r=.022impliesr =.022,whichin turn shows an
extremely weak linear relationship.
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Supplementary Exercises

68.
a N=8, Sx =207,S% = 6799, Sy, = 621.8, Sy? = 48,363.76 and
SXy, =15896.8, whichgives b, = 2202 = _ 133258
11,543

b, =81.173051, and y =81.173- .1333x asthe equation of the estimated line.

b. Wewishtotest Hy: b, =0 vs H,: b, 1 0. Atlevel .01, H, will be rejected (and
the model judged useful) if either t 3 t ., =3.707 or t £-3.707. SSE=
-.1333 _-.1333 _

= =-4.2,whichis
1.206/37.985 .03175
£ - 3.707, so we do reject H, and find the model useful.

8.732664,s=1.206, and t =

[0} — ~
c. Thelarger thevalueof g (Xi - X)2 , thesmaller will be S - and the more accurate the
1

estimatewill tend tobe. For the given X 'S, é ()(i - )_()2 =1442.88, whereasthe

o -
proposed x values X, =... =X, =0, X; =... =X, =50, A (Xi - X)2 =5000.
Thusthe second set of x valuesis preferable to thefirst set. With just 3 observations at x
=0and3at x =50, é (Xi - )_()2 = 3750, which isagain preferableto the first set of

X'S.

o ) _ 1. n(25-x)
d. b, +b,(25)=77.84, and S5, +6, (25) ~ S\/H-FW

2
= 1.206\/1 + §(25- 25.875) = 426, sothe 95% Cl is

8 11.543
77.84+(2.447)(.426) = 77.84+1.04 = (76.80,78.88). Theinterval isquite

narrow, only 2%. Thisisthe case because the predictive value of 25% isvery close to
the mean of our predictor sample.
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A

b,-1
Thetest statistic valueist = —= , and H, will berejected if either
S-

b,
t3 toy,, =2.2010rt £-2201. with
Sx, =243,Sx’ = 5965,Sy, = 241,Sy? = 5731 and Sx y, =5805,
b, =.913819, 60 =1457072,SE=75.126,5=2.613, and 5; =.0693,

t= % =-1.24. Because—1.24 isneither £ - 2.201 nor 3 2.201, H, cannot

berejected. Itisplausiblethat b, =1.

oo 18902 _
(136)(128.15)

samplesize=8
§ =326.976038 - (8.403964)x . Whenx =355, § = 28.64.

Y es, the model utility test is statistically significant at the level .01.

=/r? =./0.9134 = 0.9557

First check to seeif the value x = 40 falls within the range of x values used to generate
the least-squares regression equation. If it does not, this equation should not be used.
Furthermore, for this particular model an x value of 40 yields ag value of —9.18, which is
an impossible valuefory.

r? =.5073

r= +«/r_2 =+/.5073 =.7122 (positive because 61 is positive.)

Wetesttest Hy: b, =0 vs Hy : b, 1 0. Thetest statistict = 3.93 gives p-value =

.0013, which is< .01, the given level of significance, therefore we reject H, and conclude
that the model is useful.
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d. Weusea95%Cl for Myg,. Vs = -787218 +.007570(50) =1.165718,

t o515 = 2.131, s=“Root MSE" = .020308, s0

1 17(50- 42.33)°

.., =.20308 |-=+
R J 17 17(41,575)- (719.60)°

1.165718+ 2.131(.051422) =1.165718 +.109581 = (1.056137,1.275299).

=.051422 . Theinterval is, then,

Y(s) = - 787218+ .007570(30) =1.0143. The residual is
y- §=.80-1.0143 = - .2143.

Regression Plot

Noy:

T T T T T T T T
0 100 200 300 400 500 600 700

CO:

The above analysiswas created in Minitab. A simple linear regression model seemsto fit
the datawell. The least squares regression equationis § = - .220 +.0436X. The

model utility test obtained from Minitab produces at test statistic equal to 12.72. The
corresponding p-valueis extremely small. So we have sufficient evidence to claim that

BCO isagood predictor of DNO, .

y=-.220+ .0436(400) =17.228. A 95% prediction interval produced by Minitab

is(11.953, 22.503). Sincethisinterval issowide, it does not appear that DNO,, is
accurately predicted.

Whilethelarge DCO value appearsto be “near” the least squares regression line, the
value has extremely high leverage. Theleast squares line that is obtained when

excluding the valueis § =1.00 +.0346X . Ther? valuewith the valueincluded is 96%
and is reduced to 75% when the value is excluded. The value of swith the value

included is 2.024, and with the value excluded is 1.96. So the large DCO value does
appear to effect our analysisin a substantial way.
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n=9, Sx = 228,Sx’ =5958, Sy, =93.76,Sy? = 982.2932 and
243.93

Sxy, =234815, giving b, _W = - 148919, b, = 14.190392, and

the equation § =14.19- (.1489)x.

b1 isthe expected increase in |oad associated with a one-day age increase (so a negative
valueof D, correspondsto adecrease). Wewishtotest H, : b, =-.10 vs.

H, : b, <-.10 (thealternative contradicts prior belief). H, will be rejected at level

b, - (- .10)

561

05if t = £-1,, =-1.895. With SSE = 1.4862, 5= 4608, and

N
fod)
o
oo

S; = =.0342. Thust = % =-1.43. Because—1.43isnot
1 182 .0342

£-18

(o]

5, do not reject Ho,.

(308)°

Sx =306,5x? =7946, so § (x - X)* = 7946- =143 here, as

contrasted with 182 for thegiven 9 X 'S. Even though the sample size for the proposed
x valuesislarger, the original set of valuesis preferable.
1 , 9(28- 25.33)°

s 1638
by 6 (28) 10.02, sothe 95% Cl is 10.02 + .42 = (9.60,10.44).

v

= (2.365)(.4608)(.3877) = .42, and

35979
44.713

b, =.0805, b, =1.6939, § =1.69+(.0805)x.

61=325§4739—122254 b, =-20.4046, § = - 20.40 + (12.2254)x .

r=.992, sor? = .984 for either regression.
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a.  Theplot suggests astrong linear relationship between x and y.

b. n=9, Sx =1797,Sx’ = 4334.41, Sy, = 7.28,Sy? = 7.4028 and
_299.931

6717.6
equation of the estimated lineis § = - .08259 - (.044649)x.

Sxy, =178.683, so b, =.04464854 , b, = - 08259353, and the

c. SSE=7.4028- (- 601281) - 7.977935 = .026146,

2
SST =7.4028- @ =.026146,=1.5141,and r > =1- % =.983, so

93.8% of the observed variation is “explained.”

d. §,=-.08259- (.044649)(19.1)=.7702, and
Y, -y, =.68-.7702 = - .0902.

e s=.06112,and S, = 07641;'2 =.002237, so the value of t for testing H, : b, =0
vs Hy:b, 1 Oist= 044649 _ 19.96. From Table A5, t 1p05, =5.408, so
.002237 T

p - value< 2(.0005) =.001. Thereisstrong evidence for auseful relationship.

f. A95%Clfor b, is.044649 +(2.365)(.002237) = .044649 + .005291
= (.0394,.0499).

9. A95%Clfor by + b, (20) is.810 + (2.365)(.002237)(.3333356)
=.810+.048=(.762,.858)

2
Substituting x* =0 givestheCl b, £t,,,,., XS 1 +L2 . From Example
’ N nSx?- (qu)
128, 60 = 3.621, SSE = .262453,n =14, Sx = 890, X = 63.5714, Sx? = 67,182, so

Withs= 1479, oy, = 2179, theCl is 3.621.+ 2.179( 1479), | = + 2027852
| 12 148448

= 3,621+ 2.179(.1479)(.6815) = 3.62 +.22 = (3.40,3.84).
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A

77. SSE =Sy’ - 60531 - BlSXy. Substituting 60 = M SSE becomes
n

A no
SSE=Sy*- SYSEURS Bioy=gyt- I SISV g
n n

n
é , (sy)u -¢ SxSy ~ .
=aSy” - a- blgSX% 1= S,, - b,S,,, asdesired.
& n g n H
78. The value of the sample correlation coefficient using the squared y values would not

necessarily be approximately 1. If they values are greater than 1, then the squared y values
would differ from each other by more than the y values differ from one another. Hence, the
relationship between x and y? would be less like astraight line, and the resulting val ue of the
correlation coefficient would decrease.

79.
S

fs

o — o —

a withs, =a (x - %), s, =a (y - ¥)° notethat =~ =_ [ (sincethe
s Se

X

factor n-1 appears in both the numerator and denominator, so cancels). Thus

. . s S s
b.+b,x=y+b,(x- X)=2y+—2(x- X)=y+_ |2 x——(x- X
o +byx=V+b,( )ysxx( )y‘/smm( )

= 37+i><r (X - X), as desired.
s

<
I

X

b. By .573s.d.’sabove, (above, sincer < 0) or (since sy = 4.3143) an amount 2.4721 above.
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. . . _ Sxy _ L =\2
80. With Sy giveninthetext, = ———— (whereeg. S, = A (Xi - X) ), and

Sy Sy

n

Thusthet statistic for H : b1 =0is

b (syrsanf
S/é(--‘)z 5, - 55 /5. )/(n- 2)

a SXy (5 I\s xxsyy)\/— ran- 2

> asdesired.
\/( Xy) Jl S5, 15,8, 1-r?
81. Using the notation of the exerciseabove, SST =S, and SSE=s, - b;S,,
2
5 - v
s, SE Y s, _ S,
=5, - 2,501 —=1- X =2 =r? asdesired.
S, SST Sy SuSy

82.
a. A Scatter Plot suggests the linear model is appropriate.
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b, :S—Xy. Also, szﬁln_ 5 and SSE = Sy?- b,Sy, - b,Sx . =s, - b,
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Minitab Output:

The regression equation is
removal % = 97.5 + 0.0757 tenp

Pr edi ct or Coef St Dev T P
Const ant 97. 4986 0. 0889 1096. 17 0. 000
tenp 0.075691 0. 007046 10.74 0. 000
S = 0.1552 R-Sq = 79. 4% R-Sq(adj) = 78.7%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 2.7786 2.7786 115. 40 0. 000
Resi dual Error 30 0.7224 0. 0241

Tot al 31 3.5010

Minitab will output all the residual information if the option is chosen, from which you
can find the point prediction value Y,,s = 98.2933, the observed valuey = 98.41, so
the residual =.0294.

Roughly .1

R =794

A 95%Cl for by, using to,s 5, = 2.042:
075691+ 2.042(.007046) = (.061303,.090079)

The slope of theregression line is steeper. The value of sisamost doubled, and the
value of R? drops to 61.6%.
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Using Minitab, we create a scatterplot to seeif alinear regression model is appropriate.

blood glucose level

time

A linear model isreasonable; although it appearsthat the variance iny getslarger asx

increases. The Minitab output follows:
The regression equation is
bl ood gl ucose level = 3.70 + 0.0379 tinme

Pr edi ct or Coef St Dev T P
Const ant 3. 6965 0.2159 17.12 0. 000
tinme 0. 037895 0. 006137 6.17 0. 000
S = 0.5525 R-Sq = 63.4% R-Sq(adj) = 61.7%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 11. 638 11.638 38.12 0. 000
Resi dual Error 22 6.716 0. 305

Tot al 23 18. 353

The coefficient of determination of 63.4% indicates that only a moderate percentage of the
variation iny can be explained by the changein x. A test of model utility indicates that time
isasignificant predictor of blood glucose level. (t = 6.17, p=0.0). A point estimate for blood
glucose level when time = 30 minutesis 4.833%. We would expect the average blood
glucose level at 30 minutes to be between 4.599 and 5.067, with 95% confidence.

a.  Using the techniques from a previous chapter, we can do at test for the difference of two
means based on paired data. Minitab’spaired t test for equality of meansgives t = 3.54,
with ap value of .002, which suggests that the average bf% reading for the two methods
isnot the same.
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b. Using linear regression to predict HW from BOD POD seems reasonabl e after |ooking at
the scatterplot, below.

20 —

15 — . *s

HW

10 —

The least squares linear regression equation, aswell asthetest statistic and p value for a
model utility test, can be found in the Minitab output below. We see that we do have
significance, and the coefficient of determination shows that about 75% of the variation
in HW can be explained by the variationin BOD.

The regression equation is
HW= 4.79 + 0.743 BOD

Pr edi ct or Coef St Dev T P
Const ant 4,788 1.215 3.94 0. 001
BOD 0.7432 0.1003 7.41 0. 000
S = 2.146 R-Sq = 75.3% R-Sq(adj) = 73.9%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 252. 98 252.98 54.94 0. 000
Resi dual Error 18 82. 89 4.60

Tot al 19 335. 87

For the second boiler, N =19, Sx, =125, Sy, =472.0, Sx* = 3625,

Sy? =37140.82 , and Sx y, =9749.5, giving §, = estimated slope

= -6%2: =-.0821224, g, =80.377551, SSE, = 3.26827, S, =1020.833.
For boiler #1,n=8, b, = -.1333, SSE, =8.733, and S =1442.875. Thus

$2 - 8.733+3.286 - .1333+.0821

10

=- '05:;2 =-114. t,,, = 2.228 and-1.14isneither 3 2.228 nor £ - 2.228, so

=12,s =1.095,andt=

1 1
1' 09 1442875 + 1020.833

Ho isnot rejected. Itisplausiblethat b, =@, .
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CHAPTER 13

Section 13.1

5 1 (x-15)°
a X=15and d (X, - X} =250, s0sd.of Y - V, ile\/l- L
j 5 250

6.32,8.37,894,837,and6.32fori =1, 2, 3,4, 5.

b. Now X=20and (x, - Y)Z =1250, giving standard deviations 7.87, 8.49, 8.83,
8.94,and2.83fori=1,2,3,4,5.

c. Thedeviation from the estimated lineislikely to be much smaller for the observation
madein the experiment of b for x = 50 than for the experiment of awhen x = 25. That
is, the observation (50, Y) ismorelikely to fall close to the least squares line than is (25,
Y).

2. The pattern gives no cause for questioning the appropriateness of the simple linear regression
model, and no observation appears unusual.

a. Thisplotindicatesthere are no outliers, the variance of eisreasonably constant, and the e
arenormally distributed. A straight-line regression function is areasonable choice for a
mode.

1 [ ]
]
L e
L
L J [ ]
Q i *
T 0 . L4
> e
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1 ° .
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T T T
100 150 200
filtration rate

393



Chapter 13: Nonlinear and Multiple Regression

Weneed Su= § (x - X)° = 415,914.85 -

2
% =18,886.8295 . Then each

e can be calculated asfollows: g = 8 . Thetable

1 i >
wor e Ly (x - 140.895)
20  18,886.8295

below shows the values:

standardized standardized

residuals e/el residuals e/q
-0.31064 0.644053 0.6175 0.64218
-0.30593 0.614697 0.09062 0.64802
0.4791 0.578669 1.16776 0.565003
1.2307 0.647714 -1.50205 0.646461
-1.15021 0.648002 0.96313 0.648257
0.34881 0.643706 0.019 0.643881
-0.09872 0.633428 0.65644 0.584858
-1.39034 0.640683 -2.1562 0.647182
0.82185 0.640975 -0.79038 0.642113
-0.15998 0.621857 1.73943 0.631795

Noticethat if € ~e/s, then /€ ~s.All of the €/ € 'srange between .57 and .65,
which arecloseto s.

This plot looks very much the same asthe onein part a.

standardized residuals

100 150 200
filtration rate
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a.  The(x, residual) pairsfor the plot are (0, -.335), (7, -.508), (17. -.341), (114, .592), (133,
.679), (142, .700), (190, .142), (218, 1.051), (237,-1.262), and (285, -.719). The plot
shows substantial evidence of curvature.

b. The standardized residuals (in order corresponding to increasing x) are -.50, -.75, -.50,
.79, .90, .93, .19, 146, -1.80, and-1.12. A standardized residual plot showsthe same
pattern astheresidual plot discussed in the previous exercise. The z percentilesfor the
normal probability plot are —1.645, -1.04, -.68, -.39, -.13, .13, .39, .68, 1.04, 1.645. The

plot follows. The pointsfollow alinear pattern, so the standardized residual s appear to
have anormal distribution.

Normal Probability Plot for the Standardized Residuals

std resid

percentie

a.  97.7% of the variation in ice thickness can be explained by the linear relationship
between it and elapsed time. Based on thisvalue, it appearsthat alinear model is
reasonable.

b. Theresidual plot showsacurvein the data, so perhaps a non-linear relationship exists.
One observation (5.5, -3.14) is extreme.
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b

H,:b, =0vs. H,:b,; 1 0. Thetest statisticis t = —%, and we will reject H, if
561

£3 Uy, = 2776 OFif t£-2.776. g =S = 12 _ gor ang

S, 12869

=10.97 . Since 10.97 3 2.776 , wereject H, and conclude that the model

t= 6.19268
isuseful.

Y70 =1008.14+ 6.19268(7.0) = 1051.49, from which the residual i

y- 9(7'0) =1046 - 1051.49 = - 5.49. Similarly, the other residuals are-.73, 4.11,
7.91, 3.58, and—9.38. The plot of theresidualsvsx follows:

10

RESI1
o
|

-10 —

Because a curved pattern appears, alinear regression function may be inappropriate.

The standardized residuals are calcul ated as
- 5.49

2
R N Y
6 165.5983

.624, 1.208, .587, and—1.841. Theplot of e* vsx follows:

e = =-1.074 , and similarly the others are -.123,

SRES1

This plot gives the same information as the previous plot. No values are exceptionally
large, but the e of —1.841 iscloseto 2 std deviations away from the expected value of 0.

3%



Chapter 13: Nonlinear and Multiple Regression

120 —

110 — e

100 —

90 —

dry weight

80 —
70

60 — hd
T T T T T T T T T

0 1 2 3 4 5 6 7 8
exposure time

Thereisan obvious curved pattern in the scatter plot, which suggests that asimple
linear model will not provide a good fit.

b. The ¥'s,€'s and e*’ sare given below:

X y Yy e e*
0 110 126.6 -16.6 -155
2 123 1133 97 .68
4 119 100.0 190 125
6 86 86.7 -7 -05
8 62 734 -114 -1.06
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8. First, we will look at a scatter plot of the data, which isquite linear, so it seems reasonable to
use linear regression.

70 hd
60 |
g . i
<
=}
c
S
2 40 — » [ ]
X
© o
30 —H .. P [ 4
..
20 — -
T T T T
40 50 60 70

heart rate response

The linear regression output (Minitab) follows:

The regression equation is

y =- 51.4 + 1.66 x

Pr edi ct or Coef St Dev T P
Const ant -51. 355 9.795 -5.24 0. 000
X 1.6580 0.1869 8. 87 0. 000
S = 6.119 R-Sq = 84.9% R-Sq(adj) = 83.8%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 2946.5 2946.5 78.69 0. 000
Resi dual Error 14 524.2 37.4

Tot al 15 3470. 7

A quick look at the t and p values shows that the model is useful, and r? shows a strong
relationship between the two variables.

The observation (72, 72) has large influence, sinceits x valueis adistance from the others.
We could run the regression again, without this value, and get theline:

oxygen uptake = - 44.8 + 1.52 heart rate response.
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Both a scatter plot and residual plot ( based on the simple linear regression model) for the first
data set suggest that a simple linear regression model is reasonable, with no pattern or
influential data points which would indicate that the model should be modified. However,
scatter plotsfor the other three data sets reveal difficulties.

Scatter Plot for Data Set #1 Scatter Plot for Data Set #2
11—
3 . N N
10 — . * °
o . v
9 — -
»
. 72—
s —
7 - M B ) > 6 *
6 — N 5 *
5 R 41
4 T T 3Lp T T
4 9 14 4 9 14
X X
Scatter Plot for Data Set #3 Scatter Plot for Data Set #4
13 ® = "
b 12
4 11
1o 10 —
= 9 . R
8 - « ! &s
7 s ! ' 8
6 « " ) 6_!
5 |. ; : 5 T T T
T : M 10 15 20

X

For data set #2, a quadratic function would clearly provide amuch better fit. For data set #3,
therelationship is perfectly linear except one outlier, which has obviously greatly influenced
thefit even though its x valueis not unusually large or small. The signs of the residuals here
(corresponding toincreasing X) are+ + + + - - - - - + -, and aresidual plot would reflect this
pattern and suggest a careful look at the chosen model. For dataset #4 it is clear that the
slope of the least squares line has been determined entirely by the outlier, so this point is
extremely influential (and itsx value does liefar from the remaining ones).
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Since Sg = 0 always, the residuals cannot be independent. Thereisclearly alinear
relationship between the residuals. If one g islarge positive, then al least one other g
would have to be negativeto preserve Sg = 0. This suggests a negative correlation

between residuals (for fixed values of any n— 2, the other two obey a negative linear
relationship).

~ 5 Sy )u -~ € )2 U
Se8 =50y, - XY~ B (x - 1) = Sy, - SIS 0,65 - () G
& nou g n g

, but the first term in brackets is the numerator of b, while the second term isthe

denominator of Bl,sothedifference becomes (numerator of 61)—(numerator of 61):
0.

Thefive q* 'S from Exercise 7 above are —1.55, .68, 1.25, -.05, and —1.06, which sum to
-.73. Thissum differstoo much from 0 to be explained by rounding. Ingeneral itis not
truethat Sg = 0.
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(x, - X)S(j X - XN §
= c.Y. ,
S(Xj - x) aJ. o

i
—\2
where ¢, =1 1 (Xi - X) forj=iand C, =1 1 (Xi _ X)(Xj - X) for
i T ST < )2 - i T ST =2
n nS‘xj - x) n S(xj - x)
Jri. ThusVar(Yi - QI): SVar(chj) (sincethe Y|’ sareindependent) = S “SC
which, after some algebra, gives equation (13.2).

Y-V =Y - Ve By(x - %)= - 24 Y, -
n;

2
i

s 2 =Var(Y) =Var(Y, +(Y, - ¥, ) =var(¥)) +Var(y, - ¥).s0
é
2é1

4 (Xi B i)z

Var(\(i - \?i):s 2_Var(Y,)=s?-s
gn nS\x; - X

u

G L

>0 which is exactly
g

(13.2).

As X; movesfurther from X, ()(i - 7)2 grows larger, so VVar (?I) increases (since
(X]- - )_()2 hasapositive signin Val‘(YAi)), but Var (Y, - ?i)decreases (since

(xi - )_()2 has anegative sign).

Se =34, whichisnot =0, so these cannot be the residuals.
Each X;€ ispositive (since X, and €, have the samesign) so SX.€ >0, which

contradicts the result of exercise 10c, so these cannot be the residuals for the given x
values.
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The distribution of any particular standardized residual isalso at distribution with n—2d.f.,

* Y - .
since € isobtained by taking standard normal variable f*——Y and substituting the

Y,-Y
estimate of s in the denominator (exactly asin the predicted value case). With Ei* denoting
the i standardized residual as arandom variable, when n = 25 Ei* has at distribution with 23
df.and t, ,, = 2.50, 50 P( E; outside (-250, 250)) =

P(E; 3 2.50)+P(E," £ - 2.50)=.01+.01=.02.

space
a N, =n, =3 (3observationsat 110and 3at 230), N, =n, =4, y, =202.0,

Y, =149.0, ¥, =1105, y, =107.0, SSy; = 288,013, so0

SSPE = 288,013 [3(202.0)7 +3(149.0)° + 4(110.5)° +4(107.0)° | = 4361.
With Sx, = 4480, Sy, =1923, Sx? = 1733500, Sy? = 288,013 (asabove),
and SXI Y = 544,730, SSE = 7241 s0 SSLF = 7241-4361=2880. Withc—2=2andn

—c=10, Fog,,0 = 4.10. MSLF = &280 =1440 and SSPE = %L =436.1,

so the computed value of Fis 4401 = 3.30. Since 3.30 isnot 3 4.10, we do not

reject H,. Thisformal test procedure does not suggest that alinear model is
inappropriate.

b. The scatter plot clearly reveals a curved pattern which suggests that a nonlinear model
would be more reasonable and provide a better fit than alinear model.
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Section 13.2

15.

Scatter Plot of Y vs X

15 —

The points have a definite curved pattern. A linear model would not be appropriate.
b. Inthisplot we have astrong linear pattern.

Scatter Plot of In(Y) vs In(X)

In(y)

c. Thelinear pattern inb above would indicate that atransformed regression using the
natural log of both x and y would be appropriate. The probabilistic model isthen

y= ax® »e . (The power function with an error term!)

d. A regression of In(y) onIn(x) yields the equation In( y) = 4.6384 - 1.04920In( x) .

Using Minitab we can get aP.l. for y when x = 20 by first transforming the x value:
IN(20) = 2.996. The computer generated 95% P.1. for In(y) when In(x) = 2.996 is
(1.1188,1.8712). We must now take the antilog to return to the original unitsof Y:

(%8, 6+57:2) = (3.06,6.50)..
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A computer generated residual analysis:

Residual Model Diagnostics

Normal Plotof Residuals I Chart of Re siduals
2 * 34 3.05L=2820
2
= 1 4 —
] 1
3 N E 0 — F=-0.06771
‘@ 0 R 3 / — |
1) . o .1 -
14 . 4
1 2
2 N -3 3.05L=2.956
- — T T T T T T T T T T T T T T T
15 -10 -05 00 05 10 15 1 2 3 4 5 6 7 8
Normal Score Observation Number
Histogram of Residuals Residuals vs. Fits
3 2
3 24 = 17
e ? E
g S
3 2 o0
g 4}
g1 :
-1 -
—| r i4
o T T T T T T T T -2 T T T
-1.5-1.0 0.5 0.0 0.5 10 1.5 2.0 0 1 2 3
Residual Fit

Looking at theresidual vs. fits (bottom right), one standardized residual, corresponding to
the third observation, isabit large. There are only two positive standardized residuals,
but two others are essentially 0. The patternsin the residual plot and the normal
probability plot (upper left) are marginally acceptable.

Sx =9.72, Sy( =313.10, Sx’ = 8.0976, Sy¢ = 288,013,
Sx, y¢=255.11, (all from computer printout, where y§ = In(L178)), from which
61 = 6.6667 and 60 = 20.6917 (again from computer output). Thus

A

b =D, =6.6667 andd = €* = 968,927,163.

Wefirst predict Y( using the linear model and then exponentiate:
y(= 20.6917 + 6.6667(.75) = 25.6917, so

¥ =L, = €% =1.438051363" 10'.

Wefirst compute a prediction interval for the transformed data and then exponentiate.

—\2
With s, = 2.228, 5= 5046, and J1+li+ (95- %)

2 sx?-(sx)*/12

=1.082, the

predictioninterval for y( is

27.0251+ (2.228)(.5496)(1.082) = 27.0251+1.4334 = (25.5917,28.4585).
TheP.l. fory isthen (825‘5917, 6‘28'4585).
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Sx(=15501, Sy( =13.352, Sx¢ = 20.228, Sy¢ = 16.572,
Sx¢ y¢=18.109, fromwhich b, =1.254 and b, =- .468 so b = b, =1.254
and d = e “*® = 626.

b. The plots give strong support to this choice of model; in addition, r? = .960 for the
transformed data.

C. SSE =.11536 (computer printout), s=.1024, and the estimated sd of 6 1 18.0775, s0

t= 125-133 1.07. Since-1.07isnot £ - t oo ,; = - 1.796, H, cannot be
0775 o

rejected in favor of Hy,

d. Theclaimthat M, =2m,,. isequivalenttoa X5° = 2a(2.5)b ,orthat b =1.

1-133 _ -4.30 and

Thuswewishtest H, : b, =1vs. H,_:b; 1 1. witht=

RR - tg5s1; £ - 3.106, H, isrejected at level .01since - 4.30£ - 3.106.

A scatter plot may point usin the direction of a power function, sowetry Yy =ax” . we

transform X(=In( X),so y=a + b In( X) . Thistransformation yieldsa linear regression
equation y =.0197 - .00128x( or y =.0197 - .00128In( X) . Minitab output follows:

The regression equation is
y = 0.0197 - 0.00128 x

Pr edi ct or Coef St Dev T P
Const ant 0.019709 0. 002633 7.49 0. 000
X -0.0012805 0.0003126 -4.10 0. 001
S = 0.002668 R-Sq = 49. 7% R-Sq(adj) = 46. 7%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0.00011943 0.00011943 16.78 0. 001
Resi dual Error 17 0.00012103 0.00000712

Tot al 18 0.00024046

The model is useful, based on at test, with ap value of .001. But r* = 49.7, so only 49.7% of
the variation in'y can be explained by its relationship with In(x).

To estimate y 000, We need X(= In( 5000) =8.51718 . A point estimate for y when x
=5000isy = .009906. A 95 % prediction interval for ysoqq iS (.002257,017555).
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a.  No, thereisdefinite curvaturein the plot.

b. Y(=b,+ bl(X()+e where X¢:tL and y(=In(lifetime) . Plotting y( vs.
emp

X( gives aplot which has a pronounced linear appearance (and in fact r? = .954 for the
straight linefit).

c. Sx(=.082273, Sy(=123.64, Sx¢ =.00037813, Sy¢ =879.88,

Sx¢ y¢= 57295, fromwhich b, = 3735.4485 and 60 = - 10.2045 (valuesread
from computer output). With x =220, X(=.00445 so
§(= - 10.2045 + 3735.4485(.00445) = 6.7748 and thus § = e =875.50.

d. Forthetransformed data, SSE=1.39857,and N, =N, =N, =6, y{ =8.44695,
y§ =6.83157, y§ =5.32891, from which SSPE = 1.365%4, SSLF = .02993,

- _-02993/1 =.33. Comparingthisto F,,,; =8.68, itisclear that H, cannot
1.36594/15 o

be rejected.

After examining a scatter plot and aresidual plot for each of the five suggested models as well
asfory vs. x, | felt that the power model Y =ax” e (y(=In(y)vs.
X = In( X)) provided the bet fit. The transformation seemed to remove most of the curvature

from the scatter plot, the residual plot appeared quite random, |e|¢ | <1.65 for every i, there

was no indication of any influential observations, and r? = .785 for the transformed data.

4

10
a Thesuggested model isY = b, + bl(X()+e where X¢=——_ The summary
X

quantitiesare Sx( =159.01, Sy, =121.50, Sx¢ = 4058.8, Sy’ = 18652,
Sx¢y, = 22816, fromwhich b, = - .1485 and b, =18.1391, and the estimated
1485

regression functionis y =18.1391- ——
X

b. x=500p y=18.1391- 1485 =15.17.
500
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1 _ 1 _ .
a —=a +bx,sowith y¢=—, y(=a + bx. The corresponding probabilistic model
y y

is i:a +bx +e.
y

1 N &l .0 &l 0
b. —-1=€"" solng=- 1==a +bx. Thuswith y¢= Ing—- 1z, y(=a + bx.
y Y o Y o
The corresponding probabilistic model is Y (=a + bX +e(, or equivalently

1
Y=——"—wheree =e®.
1+e™ e
c. In(y)=€e"™ =In(In(y)) =a + bx. Thuswith y¢=In(In(y)), y¢=a + bx.
The probabilistic model is Y (=a + bx +e(, or equivalently, Y = e’ »e where
e=¢e*

d. Thisfunction cannot be linearized.

Var (Y) = Var (@e® x) = hek’x]2 Aar(e) =a 2e®™ % 2 where we have set
Var(e) =t 2. 1f b >0, thisisan increasing function of x so we expect more spread iny

for large x than for small x, while the situation isreversed if b <O. Itisimportant to redlize

that a scatter plot of data generated from this model will not spread out uniformly about the
exponential regression function throughout the range of x values; the spread will only be
uniform on the transformed scale. Similar results hold for the multiplicative power model.

Hy,:b, =0vsH, :b,* 0. Thevalueof thetest statisticisz=.73, witha

corresponding p-vaue of .463. Sincethe p-valueis greater than any sensible choice of alpha
wedo not reject Hy. Thereisinsufficient evidence to claim that age has a significant impact
on the presence of kyphosis.
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25.  Thepointestimateof b, is b, =.17772, so the estimate of the odds ratio is

e™ =e'"""2 % 1.194. Thatis, when the amount of experience increases by oneyear (i.e. a

one unit increasein x), we estimate that the odds ratio increase by about 1.194. The z value
of 2.70 and its corresponding p-value of .007 imply that the null hypothesis H : bl =0
can bergjected at any of the usual significance levels (e.g., .10, .05, .025, .01). Therefore,
thereis clear evidence that b 1 Isnot zero, which means that experience does appear to affect

the likelihood of successfully performing thetask. Thisis consistent with the confidence
interval ( 1.05, 1.36) for the odds ratio given in the printout, since thisinterval does not

containthevalue 1. A graph of pA appears below.

0.9 —
0.8 —
0.7 —
0.6 —
0.5 H

p()

0.4 —
0.3 T
0.2 H
0.1 —

0.0 —

T T T T
0 10 20 30

experience

Section 13.3

26.
a. Thereisaslight curveto thisscatter plot. It could be consistent with aquadratic
regression.

b. Wedesire R?, whichwefind in the output: R* =93.8%

c. Hy:b,=b,=0vsH,:atleastoneb, * 0. Thetest statisticis

MSR _ _ .
f = E = 22.51, and the corresponding p-valueis .016. Since the p-value < .05,

wergject H, and conclude that the model is useful.

d. Wewant a99% confidence interval, but the output gives us a 95% confidence interval of
(452.71,529.48), which can be rewritten as 491.10+ 38.38; t,;, =3.182, s0

_3838 _ 12.06; Now, t g5, = 5.841, s0the 99% C.I. is

Sy>14
3.182
491.10 +5.841(12.06) = 491.10+ 70.45 = (420.65561.55).

ee Hy:b,=0vsH,:b,* 0. Thetest statisticist = -3.81, with acorresponding p-

valueof .032, whichis< .05, sowergject H,. the quadratic term appears to be useful in
this model.
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27.
a. A scatter plot of the dataindicated a quadratic regression model might be appropriate.

75 —

70 4

65 —

60 —

55 —

. »
50 T T T T
1 2 3 4 5 6 71 8

X

b. §=84.482- 15.875(6)+1.7679(6) = 52.88; residual =
Ys - Y = 53- 52.88=.12;

61.77 _
586.88

.895

2
c. SST=Sy?- (1) - sg6.88, 0 RZ =1-
n

d. Thefirsttwo residuals are the largest, but they are both within theinterval (-2, 2).
Otherwise, the standardized residual plot does not exhibit any troublesome features. For

the Normal Probability Plot:

Residual Zth percentile
-1.95 -153
-.66 -.89
-25 -49
o4 -.16
20 16
.58 49
90 .89
191 153

(continued)
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The normal probability plot does not exhibit any troublesome features.

residual
o
1

z %ile

e My, =52.88 (fromb) and t gy, 3 = toss = 2.571, sotheCll.is
52.88+ (2.571)(1.69) =52.88 + 4.34 = (48.54,57.22).

f. SSE=61770 S’ = % =12.35 and 4/12.35+ (1.69)> =3.90. ThePl.is

52.88 + (2.571)(3.90) = 52.88+10.03 = (42.85,62.91).

a My, =b,+b,(75)+b,(75)° =-1130937+3.3668475)- .0178((75)* =39.41

~

b. §=b, +b,(60)+b,(60)° =2493.

c. SE=Sy7- b,Sy - b,Sxy - b,Sx?y, =838643- (- 1130937)(210.70)
- (3.3684)(17,002) - (- .0178)(1,419,780) = 217.82,
s _SE 21782 7261, s=852
n- 3 3
6. R =1- 22182 _ 199
987.35
e Howill berejected in favor of H,if either t3 t .. =5.841orif t £-5.841. The
computed valueof tist = - 01780 =-7.88, andsince - 7.88E£ - 5.841, we reject
00226

Ho.
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From computer output:

y: 11189 12066 11471  94.06 58,69
y-y: 189 234 429 -8.06 331
10337

Thus SSE=(- 1.89) +...+(3.31)* =10337, &’ == —=5169,s=7.19.

2
SST=5y? - m:2630, o R =1- 2837 g6
n 2630

Ho :b, =0 will bergjectedin favorof H, :b, * O if either t3 t ., =4.303 or if
-1.84
t£-4.303. witht =——— =-3.83, H, cannot be rejected; the data does not argue

strongly for the inclusion of the quadratic term.

To obtain joint confidence of at least 95%, we compute a 98% C.1. for each coefficient

using t o, =6.965. For b, theCll.is 806+ (6.965)(4.01) =(- 19.87,35.99) (an

extremely wideinterval), and for b, theC.l.is- 1.84+ (6.965)(.480)
=(- 5.181.50).

tos, =2920 and b, +4b, +16b, =11471, sotheC.I. is 11471 (2.920)(5.01)
=114.71+ 14.63=(100.08129.34).

A A A

Ifweknew b, b,,b,, thevalue of x which maximizes b, + b, X+ b, X* would be
obtained by setting the derivative of thisto 0 and solving:

A

b
b, +2b,x=0P Xx=-—2. Theestimateof thisis X = - —— =2.19,

2 2 2
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R? = 0.853. This means 85.3% of the variation in wheat yield is accounted for by the
model.

- 13544 +(2.201)41.97) = (- 227.82.- 43.06)

Hy:m,g, =1500; H,:m,  <1500; RR:t£-t A =-2.718
Whenx =25, y=140215

(= 1402.15- 1500: 183
535

Fail torgject H,. The data does not indicate I”I'l,ﬁ_5 islessthan 1500.

1402152 (2201/(1365)° + (53.5) =(1081.317250)

Using Minitab, the regression equationisy = 13.6 + 11.4x - 1.72x2

Again, using Minitab, the predicted and residual values are:
9 : 23327 23327 20587 31814 31814 31814 20.317
y- 9 : -327 1173 1587 914 186 1.786 -317

Residuds \ersustheFitted Velles
(eporeeisy)

U —

30 —

Residual

26 —

24 —

2 —

20 — a

o1

T
20 2 2 26 B D 32 1 2 3 4 5 6

Fitted Ve X

Theresidual plot is consistent with aquadratic model (no pattern which would suggest
modification), but it is clear from the scatter plot that the point (6, 20) has had a great
influence on the fit—it isthe point which forced the fitted quadratic to have a maximum
between 3 and 4 rather than, for example, continuing to curve slowly upward to a
maximum someplace to the right of x = 6.

From Minitab output, s> = MSE = 2.040, and R? = 94.7%. The quadratic model thus

explains 94.7% of the variation in the observed y's, which suggests that the model fits
the data quite well.
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d. s? :Var(\?i)+Var(Yi - ?l) suggests that we can &ctimateVal’(Yi - ?I) by

s° - 5‘3 and then take the square root to obtain the estimated standard deviation of each

residual. This gives 4/2.040- (.955)> = 1.059, (and similarly for all points) 10.59,
1.236, 1.196, 1.196, 1.196, and .233 as the estimated std dev’ s of theresiduals. The

- .32
standardized residual s are then computed as E =-.31, (and similarly) 1.10, -1.28,

-.76, .16, 1.49, and—1.28, none of which are unusually large. (Note: Minitab regression
output can produce these values.) The resulting residual plot isvirtually identical to the
-y - 327
A A 2291 - 31, so standardizing using just s would not
S 1426

yield the correct standardized residuals.

plot of b.

Var (Y, ) +Var (Y, ) isestimated by 2.040+(.777)? = 2.638, so
S, +g =+/2.638 =1.624. With § =31.81 and t s, = 2.132, the desired P is
31.81+(2.132)(1.624) = (28.35,35.27).

.3463- 1.2933(x - X)+2.3964(x - X)* - 2.3968(x - X)°.

From a, the coefficient of X3 is -2.3968, 0 63 =-2.3968. Theresill beacontribution
t0>¢ both from 2.3964(x - 4.3456)% andfrom - 2.3968(x - 4.3456)°.
Expanding these and adding yields 33.6430 as the coefficient of X*, so 62 =33.6430.

X=45P Xx(=x- X =.1544; substituting intoayields § =.1949.

- 23968 _

t = ———— =-.97, whichisnot significant (H, : b, =0 cannot be rejected), so
2.4590
theinclusion of the cubic termis not justified.
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X =20 and s, = 10.8012 so X¢= x- 20 . Forx=20, X(=0, and
10.8012

by =.9671. Forx=25 X(=.4629, so0
9671- .0502(.4629)- .0176(.4629)* +.0062(.4629)° = .9407 .

y
y

.2 .3
§ = .9671- .050288)( 209 01768%" 209, noepX" 20 9
0.8012 g 210.8012 g 210.8012 g

00000492x° - .000446058x? + 007290688 +.96034944.

t= 0062 _ 2.00. WerejectHo if either t2 T, , =1 555 = 3.182 orif

.0031

t £-3.182. Since2.00isneither 2 3.182 nor £ - 3.182, we cannot reject Hy; the

cubic term should be deleted.

SSE = S(yi y ) andthe Y,'S arethe same from the standardized as from the
unstandardized model, so SSE, SST, and R? will beidentical for the two models.

Sy’ =6.355538, Sy, =6.664, 50 SST =.011410. For the quadratic model R? =

.987 and for the cubic model, R? = .994; The two R? values are very close, suggesting
intuitively that the cubic term is relatively unimportant.

X- 499231 _
41.3652

. = 8733 - .3255(.001859 ) +.0448(.001859)° = 873 .

X =49.9231 and s, = 41.3652 so for x = 50, x¢= =.001859 and

SST = 1.456923 and SSE = 117521, so0 R? = .919.

s - 49.92316 ax- 49.92315
8733 - 32558 224510, Q
3652 5 § 213652 5

1.200887 - .01048314 x + .00002618 x> .

1
so the estimated sd of b2 isthe estimated sd of b multiplied by—

X

5, =22
S

= (0319)2_L__9= ooo77118 .

@41.3652 g

SH2

t= '—:8 =1.40 whichisnot significant (compared to t_0259 at level .05), sothe

.0319
quadratic term should not be retained.
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Y&=In(Y) =Ina + bx +g¢* +In(e) = b, + b,x + b ,x* + eCwhere ¢ =In(e),
b,=Infa) b, =b,and b, =g . That is, we should fit aquadratic to (x, In(y)). The
resulting estimated quadratic (from computer output) is 2.00397 +.1799x - .0022x?, so

b =.1799, § =-.0022, and d = €*®%" = 7.6883. (Theln(y)'sare 3.6136, 4.2499,
4.6977,5.1773, and 5.4189, and the summary quantities can then be computed as before.)

Section 13.4

36.

37.

a. Holding age, time, and heart rate constant, maximum oxygen uptake will increase by .01
L/min for each 1 kg increasein weight. Similarly, holding weight, age, and heart rate
constant, the maximum oxygen uptake decreases by .13 L/min with every 1 minute
increase in the time necessary to walk 1 mile.

b V16201140 =5.0 +.01(76) - .05(20) - .13(12) - .01(140) =1.8 L/min.

c. Y=18fromb,andS =.4, so, assumingy followsanormal distribution,
.00- 18 26-18¢
Péé‘ <7< 9= p(- 20<Z<20) = 9544

P(LO0<Y <260) =
e 4 4 g

a. Themeanvalueof y whenx; =50and x, = 3is

Mg05 = - -800+.060(50) +.900(3) = 4.9 hours.

b. When the number of deliveries (x,) is held fixed, then average changein travel time
associated with aone-mile (i.e. one unit) increase in distance traveled (x,) is.060 hours.
Similarly, when distance traveled (x;) is held fixed, then the average change in travel
time associated with on extradelivery (i.e., aone unit increasein xy) is.900 hours.

c. Under the assumption that y follows anormal distribution, the mean and standard
deviation of this distribution are 4.9 (becausex; =50 andx, =3) and S =.5 (sincethe
standard deviation is assumed to be constant regardless of the values of x; and x,).

6- 4.9
Therefore P(y £ 6) = PEZ £ 9= p(z£ 2.20) =.9861. Thatis, in the long
e (7]

run, about 98.6% of all dayswill result in atravel time of at most 6 hours.
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mean life = 125+ 7.75(40) +.0950(1100) - .009(40)(1100) =143.50

First, the mean lifewhen x; =30is equal to
125+ 7.75(30) + .0950x, - .009(30)x, = 357.50- .175x, . Sowhen the load

increases by 1, the mean life decreases by .175. Second, the mean lifewhen x; =40 is
equal to 125+ 7.75(40) +.0950x, - .009(40)x, = 435- .265X, . Sowhen the

load increases by 1, the mean life decreases by .265.

For x; = 2, % = 8 (remember the units of x; arein 1000,s) and X3 = 1 (since the outlet has
adrive-up window) the average sales are

¥ =10.00- 1.2(2)+6.8(8) +15.3(1) = 77.3 (i.e, $77,300).

For x, =3, % =5, and X3 = 0 the average sales are

¥ =10.00- 1.2(3)+ 6.8(5) +15.3(0) = 40.4 (i.e, $40400).

When the number of competing outlets (x;) and the number of people within a1-mile
radius (xz) remain fixed, the saleswill increase by $15,300 when an outlet hasadrive-up
window.

My10.5,50100 =1.52+.02(10) - 1.40(.5) +.02(50) - .0006(100) =1.96
M00.5 5050 = 1.52 +.02(20) - 1.40(.5) +.02(50) - .0006(30) =1.40
b, = - .0006; 100b, = - .06.

There are no interaction predictors—e.g., X = X; X, --inthemodel. Therewould be
dependenceif interaction predictorsinvolving x4 had been included.

R* =1- @2.490. For testing H, : b, =b, =b,; =b, =0 vs. H, at least

R
A
2

oneamong D,...,b, isnot zero, the test statisticis F ZW. Ho will be
(n-k-1)

49
rejectedif f3 Fo, 5 =276. f = % =6.0. Because 6.03 2.76,H, is
/25
rejected and the model is judged useful (this even though the value of R? is not all that
impressive).
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H,:b,=b,=..=by =0 vs Hy atleast oneamong b ..., isnot zero. Thetest

"
2

statisticis F = . Ho will bereiectedif f 3 F o . =2.42.
hRXan

.8
= i =24.41. Because 24.413 2.42,H, isrejected and the model isjudged

(1- .8?%0

useful.

Totest Hy:b, =b, =0vs. H, : atleastone b; * O, thetest statistic is

f = % =319.31 (from output). The associated p-valueisO, so at any reasonable

level of significance, H, should berejected. There does appear to be a useful linear
relationship between temperature difference and at leas one of the two predictors.

The degrees of freedom for SSE = n— (k + 1) =9— (2— 1) = 6 (which you could simply
read in the DF column of the printout), and t .5 ; = 2.447, so the desired confidence

interval is 3.000 * (2.447)(.4321) = 3.000 £1.0573, or about (1.943,4.057).

Holding furnace temperature fixed, we estimate that the average change in temperature
difference on the die surface will be somewhere between 1.943 and 4.057.

When x; = 1300 and x; = 7, the estimated average temperature differenceis

§ = -199.56 +.2100x, +3.000x, = - 199.56 +.2100(1300) + 3.000(7) = 94.44
. The desired confidenceinterval isthen 94.44 + (2.447)(.353) =94.44+ .864, or
(93.58,95.30).

From the printout, s = 1.058, so the prediction interval is

94.44+ (2.447),/(L.058)? + (:353)> =94.44 + 2.729 = (91.71,97.17).
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X1 = 2.6, % =250, and X% = (26)(250) =650, 0
§ =185.49- 45.97(2.6)- 0.3015(250)+0.0888(650) = 48.313

No, it isnot legitimate to interpret bl inthisway. Itisnot possibletoincrease by 1 unit
the cobalt content, x;, while keeping the interaction predictor, xs, fixed. When x;
changes, so does Xz, SINCe X3 = X1 %.

Y es, there appears to be a useful linear relationship between y and the predictors. We
determine this by observing that the p-value corresponding to the model utility testis <
.0001 (F test statistic = 18.924).

Wewishtotest Hy i b, =0 vs. H, : b, 1 0. Thetest statistic ist=3.496, with a

corresponding p-vaue of .0030. Sincethe p-valueis<apha=.01, wergect H, and
conclude that the interaction predictor does provide useful information about y.

A 95% C.I. for the mean value of surface area under the stated circumstances requires the
following quantities:

§ =185.49- 45.97(2)- 0.3015(500) + 0.0888(2)(500) = 31.598. Next,
t o516 = 2.120, so the 95% confidenceinterval is
31.598+ (2.120)(4.69) = 31.598 + 9.9428 = (21.6552,41.5408)

Holding starch damage constant, for every 1% increase in flour protein, the absorption
rate will increase by 1.44%. Similarly, holding flour protein percentage constant, the
absorption rate will increase by .336% for every 1-unit increase in starch damage.

R? = .96447, s0 96.447% of the observed variation in absorption can be explained by the
model relationship.

To answer the question, wetest H, : b, =b, =0 vs H_ : atleastone b, * 0. The

test statisticis f =339.31092, and has a corresponding p-value of zero, so at any

significance level we will reject Ho. Thereisauseful relationship between absorption
and at |least one of the two predictor variables.

Wewould betesting H, : b, * 0. Wecould calculate the test statistic =D , Or we
S,

could look at the 95% C.I. given in the output. Since the interval (.29828, 37298) does

not contain the value 0, we can reject H, and conclude that ‘ starch damage’ should not be

removed from the model.

The 95% C.. is 42.253 +(2.060)(.350) = 42.253+ 0.721=(41.532,42.974).
The 95% P.I. is

42253+ (2.060)(J1.094122 +.350? ): 42.253+ 2.366 = (39.887,44.619).
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- .04304
Wetest H. :b,1 0,witht =———— =-2.428 . Thep-vaueis approximatel
2 s 01773 P P Y

2(.012) =.024. Atsignificanceleve .01 we do not reject Ho. Theinteraction term
should not be retained.

The appropriate hypothesesare H, : b, =b, =b, =b, =0vs. H_ : atleast one

b, 1 0. Thetest statisticis f = /A 3 =
i . The isticis f = (l-Ry = Ty =87.63 710 =F,,,
(n-k-1) 20
smallest available significance level from Table A.9), so we canregject H, at any
significance level. We conclude that at least one of the four predictor variables appears
to provide useful information about tenacity.

o (the

The adjusted R? valueis 1-

n-1 &85£¢_, n-1 B2
n-(k+1)ESSTE;_1 n-(k+1)(1 )

=1- % (l- .946) =.935, which does not differ much from R* = .946.

The estimated average tenacity whenx, = 16.5, % =50,% =3, and X, =5is
y=6.121- .082x +.113x +.256X - .219x

§ = 6.121- .082(16.5)+.113(50) +.256(3) - .219(5) =10.091. Fora99%C..,
togs 20 = 2845, so theinterval is 10.091 + 2.845(.350) = (9.095,11.087). Therefore,

when the four predictors are as specified in this problem, the true average tenacity is
estimated to be between 9.095 and 11.087.

Y es, there does appear to be auseful linear relationship between repair time and the two
model predictors. We determine this by conducting amodel utility test:

H,:b, =b, =0 vs. H, : atleastone p 1 0. Wereject Hoif f 3 F,, =4.26.
s MSR_ 06 5315
SE( g MSE @97 232

22.913 4.26, wereject H, and conclude that at least one of the two predictor variables
isuseful.

The calculated statisticis f = =22.091. Since

Wewill reject H, : b, =0 infavorof H, I b, * Oif |f| 3 t 5 =3.25. Thetest
statisticis t = 120 _ 4.01 Which is s 3.25, so wereject H, and conclude that the “type of
312

repair” variable does provide useful information about repair time, given that the
“elapsed time since the last service” variable remainsin the model.
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A 95% confidenceinterval for b, is 1.250 + (2.262)(312) = (.5443,1.9557 ). We

estimate, with a high degree of confidence, that when an electrical repair is required the
repair timewill be between .54 and 1.96 hours longer than when a mechanical repair is
required, while the " elapsed time” predictor remains fixed.

§ =.950 +.400(6) +1.250(1) = 4.6, $? = MSE=.23222, and t 4, , = 3.25, S0 the

99% P.1.is 4.6 + (3.25)/(23222) + (1192)° = 4.6+1.69 =(2.916.29) The

prediction interval is quite wide, suggesting a variable estimate for repair time under
these conditions.

For a1% increase in the percentage plastics, we would expect a 28.9 kcal/kg increase in
energy content. Also, for a 1% increase in the moisture, we would expect a 37.4 kcal/kg
decrease in energy content.

The appropriate hypothesesare H, : b, =b, =b, =b, =0vs H, : atleastone
bi 1 0. Thevalueof the F test statistic is 167.71, with a corresponding p-value that is

extremely small. So, weregject H, and conclude that at |east one of the four predictorsis
useful in predicting energy content, using alinear model.

Hy:b; =0vs H,: by ? 0. Thevalueof thet test statisticist = 2.24, witha

corresponding p-value of .034, which isless than the significance level of .05. So we can
reject Hy, and conclude that percentage garbage provides useful information about energy
consumption, given that the other three predictors remain in the model.

§ = 2244.9 + 28.925(20) + 7.644(25) + 4.297(40) - 37.354(45) =1505.5,
and 5,5 = 2.060. (Notean error inthetext: S; =12.47, not 7.46). Soa95%C.l

for the true average energy content under these circumstancesis
1505.5+ (2.060)(12.47) =1505.5 + 25.69 = (1479.81531.1). Becausethe

interval is reasonably narrow, we would conclude that the mean energy content has been
precisely estimated.
A 95% prediction interval for the energy content of awaste sample having the specified

characteristicsis 15055+ (2.060),/(31.48)° + (12.47)
= 1505.5+ 69.75 = (1435.71575.2).
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Hy:b,=b,=..=by =
H,:atleastone b, 1 O
RR 3 F,,45=10.16
R .93
f = A =841

T R%_ D e .93%5 )

Fail torgiect Hy . The model does not appear to specify a useful relationship.

M, =21.967, t,,,, 1) = Lopss = 2.571, sotheCll. is
21.967 +(2.571)(1.248) = (18.76,25.18).

oo SE 23319
n- (k+l) 5

21.967 + (2.571),/4.6758 + (1.248)? = (15.55,28.39).

=4.6758, andtheC.l.is

SSE, =23.379, SSE, =203.82,
Hy:b,=b,=..=by=0

H, : atleast oneof theabove b; * O
RR f 3 F k-tn-(ka) = Foses =4.99

a

203.82-23.379
( Yo

(23.37%5 )

Reject H,. At least one of the second order predictors appears useful.

f = =6.43.

M450.43 = 96.8303; Residual = 91— 96,8303 = -5.8303,

Hy:b, =b,=0; H,:aleastone b; * O

RR 3 Fy,,=8.02

¢ = R% _ .76%
[ R%_ 1 @- .76&%

96.8303+ (2.262)(8.20) = (78.28115.38)

=14.90. Reject H,. The model appears useful.

96.8303+ (2.262)/24.452 +8.20° = (38.50,155.16)
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We find the center of the given 95% interval, 93.875, and half of thewidth, 57.845. This
latter valueisequal to .56 (S;) =2.262(S;) . so S; =25.5725. Then the 90%

interval is 93.785+ (1.833)(25.5725) = (46.911,140.659)

Withthe p-valuefor H, :b; * O being 0.208 (from given output), we would fail to
reject Ho. Thisfactor isnot significant given x; isin the model.

With R? =.768 (full model) and R* =.721 (reduced model), we can use an

R%- R
aternative f statistic (compare formulas 13.19 and 13.20). F = . With

¢ F’k/ (k+1)
n=12, k=2 and I=1, we have F = '76187_68'721 = 047 =1.83.
(- 768) ¢ .0257

2 = (- 1.36)? =1.85. Thediscrepancy can be attributed to rounding error.

Herek =5, n— (k+1) = 6, so H, will be rejected in favor of H, at level .05 if either

13 toye =2.447 or t £-2.447. Thecomputedvalueoftlst—5—547= 59, so

H, cannot be rejected and inclusion of x;x, asacarrier in the model is not justified.

No, in the presence of the other four carriers, any particular carrier isrelatively
unimportant, but thisis not equivalent to the statement that all carriers are unimportant.

(

5384.18- 322465/
————"=1.34,andsince 1.34 s

— 2] = —
SSE, = SST(L- R?)=3224.65, so f = =,

not 3 F .4 =4.76, H, cannot be rejected; the data does not argue for theinclusion
of any second order terms.

No, thereis no pattern in the plots which would indicate that a transformation or the
inclusion of other termsin the model would produce a substantially better fit.

k=5n-(k+))=8,s0 H, : b, =...= b, = 0 will berejected if

759
fs3 Foss.s =369 f = )4—5043 3.69, sowergject H,. At least one of the

coefficientsis not equal to zero.
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c. Whenx; =8.0and x, = 33.1 theresidual ise = 2.71 and the standardized residual ise* =
44, since e* = e/(sd of theresidual), sd of residual = e/e* = 6.16. Thusthe estimated

varianceof Y is (6.99)2 - (6.16)2 =10.915, so the estimated sd is 3.304. Since
Y =24.29 and t s, = 2.306, the desired C.I. is

24.29 + 2.306(3.304) = (16.67,31.91).

d. Fosss =4.07,50H,:b; =b, =by =0 will bergectedif f 2 4.07. With

(894.95- 390. 88%

W = 3.44, and since 3.44 is not
8

3 4.07, H, cannot be rejected and the quadratic terms should all be deleted. (n.b.: thisis

not amodification which would be suggested by aresidual plot.

SSE, =8,5s° =390.88, and f =

a  Thecomplete 2" order model obvi ously provides a better fit, so thereisaneed to
account for interaction between the three predictors.

b. A 95% CI for y when x;=%=30 and x3=10 is
66573 + 2.120(.01785) = (.6279,.7036)

Some possible questions might be:
Isthis model useful in predicting deposition of poly-aromatic hydrocarbons? A test of model
utility givesusan F = 84.39, with ap-value of 0.000. Thus, the model is useful.

Isx, asignificant predictor of y while holding x, constant? A test of H 0 - b1 =0 vsthe

two-tailed alternative givesus at = 6.98 with a p-value of 0.000., so this predictor is
significant.

A similar question, and solution for testing x, as apredictor yields asimilar conclusion: With
ap-vaue of 0.046, we would accept this predictor as significant if our significance level
were anything larger than 0.046.

a For X, =X, =X, =X, =+1, §=84.67+.650- .258+...+.050 = 85.390.
Thesingley corresponding to these X; values is85.4, so
y- §=85.4- 85390 =.010.

b. Letting Xf,...,X§ denote the uncoded variables, X{ =.1x +.3, X{ =.1x, +.3,
X§ = X3+ 2.5, and X§ =15X, +160; Substitutionof X, =10x{ - 3,

x§ +160
X, =10X§ - 3, X; =x§{- 2.5, and X, - X+ 160 yields the uncoded function.
15
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c. Forthefull model k = 14 and for the reduced model | — 4, whilen— (k + 1) = 16. Thus

H, :bg =...= by, =0 will bergectedif f 3 Fg0,6 = 2.49.
SSE = (1- R?)SST so SSE, =1.9845 and SSE, = 4.8146, giving
(48146 1.9845)/

10 =2.28. Since2.28isnot 3 2.49, H, cannot be rejected, so all

(1.9845)/16
higher order terms should be deleted.

d. Hgimygooo =85.0 willberejectedinfavorof H, :m, g4, <85.0 if

85.5548- 85 _

t£ -ty ,, = - 1.706. With = b, = 85.5548, t = 7.19,

whichiscertainly not £ - 1.706, so H, is not rejected and prior belief is not
contradicted by the data.

Section 13.5

55.
a IN(Q)=Y=Ina)+bIn(a)+gn(b) +In(e) = b, +b,x +b,x, + e where
x, =In(a),x, = In(b),b, =IN(@),b, =b,b, =g and e(=In(e). Thuswe

transform to ('Y, X;, X, ) = (In(Q),In( @), I(b)) (take the natural log of the values of
each variable) and do amultiple linear regression. A computer analysis gave

b, =1.5652, b, =.9450, and b, =.1815. Fora=10andb= .01, x =In(10) =
2.3026 and x, = In(.01) = -4.6052, from which § = 2.9053 and Q = e?9% =18.27.
b. Againtakingthenatura log, Y =In(Q) =In(a) + ba+gb+In(e), sotofit this
model it is necessary to take the natural log of each Q value (and not transform aor b)

before using multiple regression analysis.

c. Wesimply exponentiate each endpoint: (e'217 et 755) = (1.24,5.78).
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a n=20,k=5n- (k+1):14, so H, : b, =...= b, = 0 will berejected in favor
of H, :atleast oneamong b,,...,bg * 0,if f 3 Fg .., =4.69. with
(.76%
f = —£2 =9.323 4.69, soH, isrejected. Wood specific gravity appearsto be

(.231)/14

linearly related to at lest one of the five carriers.

b. For the full model, adjusted R* = % =.687, whilefor the reduced

(19)(.769)- 4

model, the adjusted R? = =.707.

c. Froma SSE, = (.231)(.0196610) =.004542, and

B B (.00226% _
SSE, =(.346)(.0196610) =.006803, so f = T, 2.32. Since

Fossis =3.34 and2.32isnot 3 3.34, weconcludethat b, =b, =b, =0.

i xg= —X?’E: ;2;40 = - 4665 and X = —><53 6855295 =

§ = .5255- (.0236)(- .4665)+(.0097)(.2196) = .5386..

2196, so

e tgsi; = 2.110 (error df = n— (k+1) = 20— (2+1) = 17 for the two carrier model), so
the desired C.I. is - .0236 + 2.110(.0046) = (- .0333- .0139).

- 525405 - 891955 -
o~ 02070, opg7Es P20

f. y=.5255- .0236(?;9(3 ¢ +, so b, for the
e 54447 g4 e 3.6660
. - .0236 )
unstandardized model = =-.004334. Theestimated sd of the
~ 0046

unstandardized b, is = ——— = -.000845.
5.447

g. §=.532 and \/52 S5 5 eie = 02058, sothe Pl is

532+ (2.110)(.02058) = .532+ .043 = (.489,.575).
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R

SSE
: D2 — k
k Adj.R C == +2(k +1)- n
1 676 647 1382
2 979 975 27
3 9819 976 32
4 9824 4

Where s? = 59825
a. Clearly themodel with k =2 isrecommended on all counts.

b. No. Forward selection would let x4 enter first and would not deleteit at the next stage.

At step #1 (in which the model with all 4 predictorswasfit), t = .83 wasthet ratio smallest in
absolute magnitude. The corresponding predictor x; was then dropped from the model, and a
model with predictors x;, %, and x4 wasfit. Thet ratio for x4 , -1.53, was the smallest in
absolute magnitude and 1.53 < 2.00, so the predictor x, was deleted. When the model with
predictors x; and x, only was fit, both t ratios considerably exceeded 2 in absolute value, so
no further deletion is necessary.

The choice of a“best” model seems reasonably clear—cut. The model with 4 variables
including all but the summerwood fiber variable would seem bests. R? isaslarge as any of
the models, including the 5 variable model. R? adjusted is at its maximum and CPis at its
minimum . Asasecond choice, one might consider the model with k = 3 which excludes the
summerwood fiber and springwood % variables.

Backwards Stepping:

Step 1: A model with all 5 variablesisfit; the smallest t-ratioist = .12, associated with
variable x; (summerwood fiber %). Sincet =.12 < 2, the variable x, was eliminated.

Step 2: A model with all variables except x, wasfit. Variable x4 (springwood light
absorption) has the smallest t-ratio (t = -1.76), whose magnitude is smaller than 2.
Therefore, x4 isthe next variable to be eliminated.

Step 3: A model with variables x; and xs isfit. Botht-ratios have magnitudes that exceed 2,
so both variables are kept and the backwards stepping procedure stops at this step. The
final model identified by the backwards stepping method is the one containing xs and Xs.

(continued)
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Forward Stepping:

Step 1: After fitting all 5 one-variable models, the model with x3 had the t-ratio with the
largest magnitude (t = -4.82). Because the absolute value of thist-ratio exceeds 2, x; was
the first variable to enter the model.

Step 2: All 4two-variable modelsthat include x; werefit. That is, the models{xs, X1}, {Xs,
Yo}, { X3, Xa}, {Xa, X} wereadl fit. Of all 4 models, thet-ratio 2.12 (for variable xs) was
largest in absolute value. Because thist-ratio exceeds 2, Xs is the next variable to enter
themodel.

Step 3: (not printed): All possible tree-variable modelsinvolving xs and xs and another
predictor, None of thet-ratios for the added variables have absol ute values that exceed 2,
so ho more variables are added. There isno need to print anything in this case, so the
results of these tests are not shown.

Note; Both the forwards and backwards stepping methods arrived at the same final model,
{xs, Xs}, in this problem. This often happens, but not always. There are cases when the
different stepwise methods will arrive at slightly different collections of predictor
variables.

If multicollinearity were present, at least one of the four R? values would be very closeto 1,
whichisnot the case. Therefore, we conclude that multicollinearity is notaproblemin this
data.

2(k +1) = % = 421 asthecriteria, three observations
n

appear to have largeinfluence. With h;; values of .712933, .516298, and .513214,
observations 14, 15, 16, correspond to response (y) values 22.8, 41.8, and 48.6.

Looking at the h;; column and using

We would need to investigate further the impact these two observations have on the equation.
Removing observation #7 is reasonable, but removing #67 should be considered aswell,
before regressing again.

2(k+1) _ 6 _ . -
a ————2=—=6; sincehus > .6, datapoint #4 would appear to have large influence.

n 10
(Note: Formulasinvolving matrix algebra appear in the first edition.)

b. Fordatapoint#2, X, = (L 3.453 - 4.920),50 b - by, =

e 1 ¢ 2e3032p ge .333p
]-_'.—736062()(§K)_1g 3453 +=- 1.09748.1644%: & 180+ and similar
& 4.9204 &11565 & .1274
2.106 ¢
calculations yield b- 6(4) :g- .040:.
& .030 4
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c. Comparing the changesin the bi 'S tothe S; 'S, none of the changesisall that

substantial (thelargest is 1.2sd’sfor the changein 61 when point #2 is deleted). Thus
although hy4islarge, indicating apotential high influence of point #4 on the fit, the actual

influence does not appear to be great.
Supplementary Exercises

65.

Boxplots of ppv by prism quality

(means are indicated by solid circles)

1200— |

700—

ppv

200

T T
cracked notcracked

prism qualilty

A two-samplet confidence interval, generated by Minitab:
Two sanple T for ppv

prism qu N Mean St Dev SE Mean
cracked 12 827 295 85
not cracke 18 483 234 55

95% ClI for mu (cracked ) - mu (not cracke): ( 132, 557)
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The simple linear regression resultsin asignificant model, r?is.577, but we have an
extreme observation, with std resid = -4.11. Minitab output isbelow. Also run, but not
included here was amodel with an indicator for cracked/ not cracked, and for a model
with the indicator and an interaction term. Neither improved the fit significantly.

The regression equation is
ratio = 1.00 -0.000018 ppv

Pr edi ct or Coef St Dev T P
Const ant 1.00161 0. 00204 491. 18 0. 000
ppv -0.00001827 0.00000295 -6.19 0. 000
S = 0.004892 R-Sq = 57. 7% R-Sq(adj) = 56.2%

Anal ysi s of Variance

Sour ce DF SS MS F P

Regr essi on 1 0.00091571 0.00091571 38. 26 0. 000

Resi dual Error 28 0.00067016 0.00002393

Tot al 29 0.00158587

Unusual Observations

Cbs ppv ratio Fit StDev Fit Resi dual St Resid
29 1144 0. 962000 0. 980704 0. 001786 -0.018704 -4.11R

R denotes an observation with a | arge standardi zed resi dual

For every 1 cmit increasein inverse foil thickness (x), we estimate that we would expect
steady-state permeation flux to increase by .26042mA/ cm?. Also, 98% of the

observed variation in steady-state permeation flux can be explained by its relationship to
inversefoil thickness.

. A point estimate of flux when inversefoil thicknessis 23.5 can be found in the

Observation 3 row of the Minitab output: § = 5.722mA/ cm?.

. Totest model usefulness, we test the hypotheses H, : b, =0 vs. H,_ : b, * 0. The

test statisticist = 17034, with associated p-value of .000, which is|ess than any
significance level, so we regject H, and conclude that the model is useful.

. With t,5¢ = 2.447 ,a95% Prediction interval for Y 4s) is

11.321+ 2.447,/.203+(253)% =11.321+1.264 = (10.057,12.585). Thatis,

we are confident that when inverse foil thicknessis 45 cm, a predicted value of steady-
state flux will be between 10.057 and 12.585 MA/cm”.
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Normal Plot of Standard Residuals Standard Residuals vs x

stdresid

The normal plot gives no indication to question the normality assumption, and the
residual plots against both x and y (only vs x shown) show no detectable pattern, so we
judge the model adequate.

For a one-minute increase in the 1-mile walk time, we would expect the VO,max to
decrease by .0996, while keeping the other predictor variables fixed.

We would expect male to have an increase of .6566 in VO,max over females, while
keeping the other predictor variables fixed.

§ =3.5959 +.6566(1) +.0096(170) - .0996(11) - .0880(140) = 3.67. The
residual is § =(3.15- 3.67) = - .52.

R? =1 SSE _1 30.1033

SST 102.3922
VO,max can be attributed to the model relationship.

=.706, or 70.6% of the observed variationsin

H,:b, =b, =b; =b, =0 will bergjected in favor of H :at least one among

(.706)/

. - . _ 4 _

b,,..,0, 1 0,if f23 Fyy,,s =825, With f = ey - 9.0053 8.25, so Ho
isrejected. It appearsthat the model specifies auseful relationship between VO,max and
at least one of the other predictors.
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Scatter Plot of Log(edges) vs Log(time)

Log(time
| |

Log(edge

Y es, the scatter plot of the two transformed variables appears quite linear, and thus
suggests alinear relationship between the two.

Letting y denote the variable ‘time’, the regression model for the variables y( and X(Cis
log,, (y) = y(=a + bx(+e(. Exponentiating (taking the antilogs of ) both sides
gives y =107 *Plodx)ee = (II.Oa )(Xb )].Oe(L =g, X% X ;i.e, themodd is

y= gOXgl e whereg, =a and g, = b . Thismodel isoften called a“power
function” regression model.

Using the transformed variables Y( and X(, the necessary sums of squares are

S,ye = 68.640- %:1'6@ =11.1615 and
2 .S
Spo=126.34- (424)° =13.98. Therefore b, = —= = 11.1615 _ 29839
16 See 1398
~ 2169 246
and by = ——- (.79839)8é—9= - .76011. Theestimateof g, is
16 & 16 g

g, =.7984and g, =10* =10 "% = 1737 . The estimated power function model
isthen y =.1737x"%®*. For x = 300, the predicted value of y is
¥ =.1737(300) "***16.502, or about 16.5 seconds.
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a. Based on ascatter plot (below), asimple linear regression model would not be

appropriate. Because of the slight, but obvious curvature, a quadratic model would
probably be more appropriate.

350 —

250 — -

Temperat
€

150 —

507 =

T T T T
100 200 300 400
Pressure

o -

Using aquadratic model, a Minitab generated regression equation is

§ =35.423+1.7191x - .0024753x?, and apoint estimate of temperature when
pressureis 200 is ¥ = 280.23. Minitab will also generate a 95% prediction interval of
(256.25, 304.22). That is, we are confident that when pressure is 200 psi, asingle value
of temperature will be between 256.25 and 304.22 °F .

5.18
For the model excluding the interaction term, R? = 1- —5 =.394, or 39.4% of the

observed variation in lift/drag ratio can be explained by the model without the interaction
accounted for. However, including the interaction term increases the amount of variation

3.07
in lift/drag ratio that can be explained by themodel to R? =1- —5 =.641, or

64.1%.
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Without interaction, we are testing H, : b, =b, =0 vs. H, : either b, or b, * 0.
"
Thetest statisticis f =1— , Therejectionregionis f 3 F ., =5.14, and
](n-k-l)
304/
(1-.394%

region, so wefail to reject H,. Thismodel isnot useful. With the interaction term, we
aretesting H, : b, =b, =b,;=0vs. H, : atleastoneof the b,'s* 0. with

the calculated statisticis f = =1.95, which does not fall in the rejection

64
rejection region f 3 F;,. =5.41 and calculated statistic f = m Gis)/ =2.98,we
S5
till fail to reject the null hypothesis. Even with the interaction term, thereis not enough
of asignificant relationship between lift/drag ratio and the two predictor variablesto
make the model useful (abit of asurprisel)

Using Minitab to generate the first order regression model, we test the model utility (to
seeif any of the predictors are useful), and with f = 21.03 and a p-value of .000, we

determine that at |east one of the predictorsis useful in predicting palladium content.
Looking at the individual predictors, the p-value associated with the pH predictor has
value .169, which would indicate that this predictor is unimportant in the presence of the
others.

Testing H, : b, =...=b,, =0 vs. H, : atleastoneof the b,'s? 0. with
calculated statistic f =6.29, and p-value .002, this model is also useful at any
reasonable significance level.

Testing Hy :bg =...= b,, =0vs. H, : atleastoneof thelisted b,'S? O, the test
(sSE,- ssE, ) (716.10- 290.27
statisticis f = &3 A' = ){20 9 =1.07. Using significance level .05,
k)/ 29027,
n- k-1 (32- 20-1)

therejectionregionwouldbe f 3 F ..., =2.72. Since 1.07 < 2.72, wefail to reject

H, and conclude that all the quadratic and interaction terms should not be included in the
model. They do not add enough information to make this model significantly better than
the ssmplefirst order model.

Partial output from Minitab follows, which shows all predictors as significant at level .05:

The regression equation is

pdconc = - 305 + 0.405 niconc + 69.3 pH - 0.161 tenp + 0.993 currdens
+ 0.355 pallcont - 4.14 pHsq

Pr edi ct or Coef St Dev T P
Const ant -304. 85 93. 98 -3.24 0. 003
ni conc 0. 40484 0. 09432 4.29 0. 000
pH 69. 27 21. 96 3. 15 0. 004
tenp -0.16134 0. 07055 2.29 0.031
currdens 0.9929 0. 3570 2.78 0.010
pal | cont 0. 35460 0.03381 10. 49 0. 000
pHsq -4.138 1.293 -3.20 0. 004
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R? =1- SSE =1 80017 =.9506, or 95.06% of the observed variationin

ST 16.18555
weld strength can be attributed to the given model.

The complete second order model consists of nine predictors and nine corresponding
coefficients. The hypothesesare H, : b, =...= by =0vs. H, : atleast oneof the

RZ
A
RZ

'ql istici = = = 1 i
b,'s® 0. Thetest statisticis f %,Wherek 9, and n = 37.Therejection
n-k-

950
regionis f 3 Fyq,, = 2.25. The calculated statisticis f = i =57.68

(a- .9506)/
27

whichis 3 2.25, so wereject the null hypothesis. The complete second order model is
useful.

Totest Hy:b, =0 vsH_ b, O (the coefficient corresponding to the wc*wt

predictor), t = ﬁ =+/2.32 =1.52. with df = 27, the p-value » 2(. 073) =.146
(from Table A.8). With such alarge p-value, this predictor is not useful in the presence

of all the others, so it can be eliminated.
The point estimate s § = 3.352 +.098(10) +.222(12) + .297(6) - .0102(10?)
- .037(6?) +.0128(10)(12) = 7.962. With t . ,, = 2.052, the 95% P would be

7.962+2.052(.0750) = 7.962+.154 = (7.808,8.116) . Because of the

narrowness of the interval, it appears that the value of strength can be accurately
predicted.

Wewishtotest Hy : b, =b, =0 vs. H, : éither b; or b, * 0. Thetest statistic

/
k
Rz

is f = - , Where k = 2 for the quadratic model. Therejection regionis
¢ Jn—k—l

(n-k-1)
.29
=F =13.27. R* =1-
kn-k-1 ~ To125 202,88

doubt about it, folks— the quadratic model is useful!

fsF

a

=.9986, giving f =1783. No

The relevant hypothesesare H, : b, =0 vs. H_ : b, 1 0. Thetest statistic valueis

A

t= & , and H,, will bergjected at level .001 if either t 3 6.869 or t £ - 6.869 (df
S~
b,
=n-3=5). Sincet = - 00163141 =-48.1£ - 6.869, H, isrejected. The
.00003391
quadratic predictor should be retained.
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c. x=1here and iy, = b, +b,(1)+b,(1)? =45.9. t
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c. No. R?isextremely high for the quadratic model, so the marginal benefit of including
the cubic predictor would be essentially nil —and a scatter plot doesn’t show the type of
curvature associated with a cubic model.

d. o = 2571, and by +b,(100) +b,(100)° =21.36, sotheCll. is
21.36 + (2.571)(.1141) = 21.36 + .69 = (20.67,22.05)

e. First, we need to figure out s* based on the information we have been given.
& = MSE = SE =29 = 058. Then, the 95%P.l. is

21.36+ 2.571(,/058+.1141)= 21.36+1.067 = (20.203,22.427)

A scatter plot of y(= Ioglo(y) vs. X shows a substantial linear pattern, suggesting the

model Y =a ¥10)” e ,ie Y(=log(a )+ bx+log(e) =b, + b,x +eC. The

necessary summary quantities are

Sx. =397, Sx* = 14,263, Sy( = -74.3, Sy¢ = 47,081, and Sx y( =-2358.1,

giving b, = 12(- 2358.1)- (307) 743) _ 08857312 and b, = - 9.12196058.
12(14,263) - (397)°

Thus b =.08857312 and @ =10 21219 The predicted value of Y( whenx =35is

- 912196058 +.08857312(35) = - 6.0219 , so § =10 %94,

a Hy:b, =b, =0 will bergjectedinfavorof H, : either b, or b, * O if

f =11__R:%r 3 Fyvocs = Fops = 955. SST =Sy? - @ = 264.5 , 50
n-k-1)

.89
RZ=1- @:SQS,and f :i
264.5 (102)7
significance level .01 and the quadratic model isjudged useful.

=30.8. Because 30.8 3 9.55 H, isregjected at

b. Thehypothesesare H,:b, =0 vs. H,: b, 1 0. Thetest statistic valueis

t= b, _-23621__ 7.69 ,and t o , = 5.408 , so H, isrejected at level .001 and p-

Ss, .3073
value < .001. The quadratic predictor should not be eliminated.

=1.895, giving the C.I.

.025,7

45.96 + (1.895)(1.031) = (44.01,47.91).
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a 8079

b. Yes, p-vaue=.007 whichislessthan .01.

c. No, p-value=.043 whichislessthan .05.

d. .14167 +(2.447)(.03301) = (.0609,.2224)

e My = 6.3067,usinga =.05, theinterval is
6.3067 + (2.447)4/(4851)° +(162)? = (5.06,7.56)

a Esimate= b, + b, (15)+ b, (3.5)* =180 + (1)15) + (10.5)(3.5) = 231.75

1174 _ o0

b. RP=1- — =
1210.30

c. Hy:b,=b,=0vs. H,:either b,or b, O (orboth). f :%:41.9,which
/9

greatly exceeds F so there appears to be auseful linear relationship.

01,2,9

d s?= _11127-4: =13044. /s + (estst.dev)’ =3.806 ., t o, = 2.262. ThePl.is

229.5+ (2.262)(3.806 ) = (220.9,238.1)

The second order model has predictors X;, X, , X;, X2, X5 , X5, X, X, , X Xg, X, X5 With
corresponding coefficients b, b,, b,, b,, b, by, b, by, by. Wewishtotest
H,:b,=Db,=by=b, =bg = by =0 vs. theaternative that at |east one of these six
(821.5— 5027 ) 530 9
b,'Sisnot zero. Thetest statistic valueis f = o] /o2 = — =1.1. Since
! (20_10) 50271

11< Fggg10 =3.22, H, cannot be rejected. Itdoesn’t appear as though any of the

quadratic or interaction carriers should be included in the model.

There are obviously several reasonable choicesin each case.
a. Themodel with 6 carriersis a defensible choice on all three grounds, as are those with 7
and 8 carriers.

b. Themodelswith 7, 8, or 9 carriershere merit serious consideration. These models merit
consideration because Rf , MSEk , and CK meet the variable selection criteriagivenin
Section 13.5.
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. (.9%5)

ez

There does not appear to be a useful linear relationship.

=24 . Because2.4<586, H, : b, =...= b, =0 cannot be rejected.

The high R? value resulted from saturating the model with predictors. In general, one
would be suspicious of amodel yielding ahigh R? value when K islargerelativeto n.

R? 2
}265) 3 586 iff —~— 2 21.975 iff R? 2 201 = 9565
7 1- R2 22.975

The relevant hypothesesare H, : b, =...= b, =0 vs. Hy at least one among

(.82% )
('17%11)

106.13 2.29,H, isrejected in favor of the conclusion that there is a useful linear
relationship between Y and at least one of the predictors.

=106.1. Because

Dy,...,bgisnot0. Fogg,y =229 and f =

tgs11, = 1.66, sothe C.I.is.041+ (1.66)(.016) = .041+ .027 = (.014,.068). b,

is the expected change in mortality rate associated with a one-unit increasein the particle
reading when the other four predictors are held fixed; we cab be 90% confident that .014

< b, <.068.

H, : b, =0 will bergjectedinfavorof H, : b, 1 0 if t = — iseither 3 2.62

b
S5,

oo £-262. t= % =5.93 2.62, soH, isrejected and this predictor is judged

important.

§ =19.607 +.041(166) +.071(60) + .001(788) +.041(68) +.687(.95) = 99.514
and the corresponding residual is 103 — 99.514 = 3.486.

Theset X;, X3, X,, X5, X5, Xg includes both X;, X,, X5, X5 and X, X;,Xg, X5, SO
Rl3,4,5,6,8 3 max (R1,45181 Rl,3,5,6)_ 723

R124 £ R12’4’5’8 =.723, but it isnot necessarily £ .689 since X;, X, isnot asubset of

X1y X5, X5, X5
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CHAPTER 14
Section 14.1
a  Wergect H, if the calculated C Zvalueis greater than or equal to the tabled value of
Cazvk_1 from TableA.7. Since 12.253 C_§514 =9.488, wewould reject Ho,.
b. Since854isnot 3 C_Sl3 =11.344, wewould fail to reject Ho.

c. Since4.36isnot 3 C.io,z = 4.605, wewould fail to reject Ho.

d. Since1020isnot3 C 3, =15.085, wewould fail to reject H.

a Inthedf.=2row of TableA.7, our C *valueof 7.5 falls between C_stvz =7.378 and

c .31,2 =90.210, so the p-valueis between .01 and .025, or .01 < p-value < .025.

b. Withdf.=6,our C*valueof 13.00 falls between C _35’6 =12.592 and
C 5256 =14.440, 50 025 < p-value < .05.

c. Withdf.=9,our C*valueof 18.00fallsbetween C g5, =16.919 and
C opso =19.022, 50.025 < p-value < .05.

d. Withk=5,df.=k—1=4,and our C *valueof 21.3 exceeds C _305’4 =14.860, so the
p-value < .005.

e Thedf.=k-1=4-1=3 ¢c? =5, islessthan C ;; ; = 6.251, so p-value> .10,

439



Chapter 14: The Andysis of Categorica Data

Using the number 1 for business, 2 for engineering, 3 for social science, and 4 for agriculture,
let P, = thetrue proportion of all clientsfrom disciplinei. If the Statistics department’s
expectations are correct, then therelevant null hypothesisis

H,:p =.40, p, =.30, p;, =.20, p, =.10, versus H : The Statistics department’s
expectations are not correct. Withd.f =k—1=4-1=3, weregject H, if

c?s3 Cf)&3 = 7.815 . Using the proportionsin H,, the expected number of clientsare::

Client’s Discipline Expected Number

Business (120)(.40) =48
Engineering (120)(.30) =36
Socia Science (120)(.20) =24
Agriculture (120)(.10) =12

Since all the expected counts are at least 5, the chi-squared test can be used. The value of the

< (n - nn )2 ] )
teststatisticisczzé_(ni p)” _ ) (observed - exp ected)

i=1 np, allcells exp ected
A 2 2 2 2
_ 2(52- 48) N (38- 36) N (21- 24) N (9-12) H=1.57,Whichisnot
é 48 36 24 12 Q

8 7.815, sowefail torgject H,. (Alternatively, p-value= P(C 23 1.57) whichis>.10,

and since the p-valueisnot < .05, wergject Hy). Thus we have no evidence to suggest that
the statistics department’ s expectations are incorrect.

The uniform hypothesisimpliesthat P, =4 =.125for1=1,...,8 %

Ho @ Pio = Pag =+ = Pgo =125 will bergjected in favor of H, if

c’3c .io,7 =12.017 . Each expected count is npjo = 120(.125) = 15, so

é(12 - 15)? -15)2U
c’= é(lz 15) +..+ (10 15) (=4.80. Because 4.80isnot 3 12.017, wefail to
e 1o 5 g

reject Ho. Thereis not enough evidence to disprove the claim.
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Wewill reject H, if the p-value < .10. The observed values, expected values, and
corresponding C % termsare:
Obs 4 15 23 25 33 21 32 14 10 8

Exp 6.67 1333 20 2667 3333 3333 2667 20 1333 6.67
c? | 1069 200 450 105 654 163 1065 1800 832 265

c?2=1.069+...+.265=6.612. Withdf.=10—1=9, our C > valueof 6.612isless

than C .io,g =14.684, so the p-value > .10, which is not < .10, so we cannot reject Ho,.
Thereis no evidence that the datais not consistent with the previously determined
proportions.

A 9:34ratioimpliesthat P,y =1 =.5625, P,y == =.1875, and p,, = £ =.2500.

Withn =195+ 73 + 100 = 368, the expected counts are 207.000, 69.000, and 92.000, so
€(195- 207)*> (73- 69)° (100- 92)*

szé( ) +( ) +( ) 0=1.623.withdf.=3-1 =2, our
é 207 69 92 0

¢ ®valueof 1.623islessthan C .io,z = 4.605, so the p-value > .10, which is not < .05, so

we cannot reject H,. The data does confirm the 9:3:4 theory.

~

u

Wetest H, i p, = p, = pP; = P, =.25 vs. H_ :atleast one proportion * .25, and d.f.

=3. Wewill regject H, if the p-value < .01.

Cell 1 2 3 4
Observed 328 334 372 327
Expected 34025 34025 340.25 34025

c *term 4410 1148 29627 5160

¢ ? =4.0345, and with 3d.f., p-value > .10, so wefail to reject Ho. The datafailsto
indicate a seasonal relationship with incidence of violent crime.
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. — 15 — 46 — 120 — 184 . . :
8. H, P =35 P, =360 Ps =565, Py =36, versus H, atleast one proportionisnot a

stated in H,. The degrees of freedom = 3, and the rejection regionis € * 3 Cos =11.344.

Cell 1 2 3 4

Observed 1 24 69 %
Expected 8.22 2521 65.75 100.82
C term 9402 0581 1606 2304

2 é (ObS- eXp)Z
exp
data does not indicate a relationship between patients’ admission date and birthday.

c =1.3893, whichisnot 3 11.344 , so H, isnot rejected. The

9.
a. Denoting the5intervalsby [0, ¢;), [C1, C), ..., [Ca, ¥ ), wewish c; for which
S .
2=P0EX£g)= Qe dx=1- e soc;=-In(8=.223L Then
2=P(c,EX£c,)p 4=P0£ X, £c,)=1- €%, s0c,=-In(6) = 5108,
Similarly, ¢ =-In(.4) = .0163 and ¢4 = -In(.2) = 1.6094. theresulting intervalsare [0,
.2231), [.2231, .5108), [.5108, .9163), [.9163, 1.6094), and [1.60%4, ¥ ).
b. Each expected cell count is40(.2) = 8, and the observed cell countsare 6, 8, 10, 7, and 9,
é6- 8)° 9- 8)?U
soc?= é( ) +___+( ) (=1.25. Because 1.25isnot 3 C.io,4 =7.779,
e 8 G
even at level .10 H, cannot be rejected; the datais quite consistent with the specified
exponential distribution.
10.
2 2 2.2 2
. < N + ) .
a C2 =é (nl anO) =é NI anIONI n plO :é NI _ ZSNI +nSpio
i=1 NP, i NnP;o i NPy ! I
2 N 2
o i o i . . .
=a —- 2n+n(l) = g —— - n asdesired. Thisformulainvolvesonly one
A . A np,
i i0 [ i0

subtraction, and that at the end of the calculation, so it is analogous to the shortcut
formulafor s*

2

k
b. C Z—é N? - Nn. For the pigeon data, k = 8,n =120, and SN? =1872, so
n .

o2 8(1872)

= - 120=124.8- 120 = 4.8 ashefore.
120
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11.
a. Thesix intervals must be symmetric about 0, so denote the 4", 5" and 6 intervals by [0,

20, [a,b), [b, ¥ ). a must be such that F (a) =.6667(% +), which from TableA 3

gives a » .43. Smilaly F (b) = .8333 implies b » .97, sothe six intervals are
(- ¥ ,-97),[-97,-43),[-43,0), [0, 43), [.43, .97), and [.97, ¥ ).

b. Thesix intervalsare symmetric about the mean of .5. From a, the fourth interval should
extend from the mean to .43 standard deviations above the mean, i.e., from .5to .5 +
.43(.002), which gives|[.5, .50086). Thusthethirdinterval is[.5-.00086, .5) =[.49914,
.5). Similarly, the upper endpoint of the fifth interval is.5 +.97(.002) = .50194, and the
lower endpoint of the second interval is.5-.00194 = .49806. Theresulting intervalsare
(- ¥ ,.49806), [.49806, .49914), [.49914, .5), [ .5, .50086), [.50086, .50194), and
[50194, ¥ ).

c. Each expected count is 45(%) = 7.5, and the observed countsare 13, 6, 6, 8, 7, and 5, so

c? =5.53. with5d.., the p-value > .10, so we would fail to reject H, at any of the

usual levelsof significance. Thereisno evidence to suggest that the bolt diameters are
not normally distributed.

Section 14.2

12.

a. Let g denotethe probability of amale (as opposed to female) birth under the binomial
model. The four cell probabilities (correspondingtox =0, 1, 2, 3) are

p.@)=0-a) p,@)=2(-a)’ ps@)=2°@-a),adp,a)=q°.
The likelihood is 3™ X{1- ¢ )**2"*™ >q "*2"*3"  Eqrming the log likelihood,

taking the derivative with respect to ( , equating to 0, and solving yields

~ n,+2n,+3n
=_2 3 4 = 66+128+48 =.504 . The estimated expected counts are
3n 480

160(1- .504)* =19.52, 480(.504)(.496)° = 59.52,60.48, and 20.48, s0
, _€(14- 19.52)° . . (16- 20.48)°

g 1952 20.48
The number of degrees of freedom for thetestis4 —1—1=2. H, of abinomial

distribution will be rejected using significancelevel .05if € % 3 € o5, = 5.992.

Because 3.45 < 5.992, H, is not rejected, and the binomial model isjudged to be quite
plausible.

1.56+.71+.20+.98 = 3.45.

O
1

~ 53
b. Now( = 50 =.353 and the estimated expected counts are 13.54, 22.17, 12.09, and

2.20. Thelast estimated expected count is much less than 5, so the chi-squared test based
on 2 d.f. should not be used.
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According to the stated model, the three cell probabilities are (1 — p)?, 2p(1— p), and p?, so
we wish the value of p which maximizes (1- p)znl[Z p(l- p)]n2 p>™ . Proceeding asin
n,+2n, 234

on 2776
aethen n(L- p)* =1163.85, n[2p(1- p)]* =214.29, np? = 9.86. Thisgives
c?o €(1212- 1163.85)° _ (118- 214.29)" (58- 9.86)°U

l + 0= 280.3. According

g 116385 214.29 986

0 (14.15), H, will berejectedif €* 3 ¢, andsince C g, , = 9.210, H, is soundly
rejected; the stated model is strongly contradicted by the data.

example 14.6 gives P = =.0843. The estimated expected cell counts

a. Wewishto maximize psq'”(l- p)”,or equivalently (SXi - n)ln p+n|n(1- p).

Equating 1 toOyields (Sxi - n) = n , Whence p ZM. For the
dp p (- p) Sx
givendata, SX. = (1)(1) + (2)(31) +...+ (12)(1) =363, so
5=8363130)_ 01> a5,
363

b. Each estimated expected cell count is P times the previous count, giving
ng =130(.358) = 46.54, ngp = 46.54(.642) = 29.88, 19.18, 12.31, 17.91, 5.08,

3.26, .... Grouping all values 3 7 into asingle category gives 7 cells with estimated
expected counts 46.54, 29.88, 19.18, 12.31, 7.91, 5.08 (sum = 120.9), and 130 - 1209 =
9.1. The corresponding observed counts are 48, 31, 20, 9, 6, 5, and 11, giving

c? =1.87. Withk=7andm= 1 (pwas estimated), from (14.15) we need
C.i0’5 =90.236. Since1.87isnot 3 9.236, we don’t reject Ho.
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The part of the likelihood involving  is [(1- q)“]nl >{q (1- q)3]nz X{qz(l- q)z]na x

[q3(1_ q )]n4 >{q 4]n5 = "2 30 NS (1_ q)4nl+3nz+2n3+n4 =q 233(1_ q)367 s
In(IikeIihood) =233Inqg + 367In(1- q ) Differentiating and equating to 0 yields

233 (1

d =500 =.3883, an ) .6117 [note that the exponent on ( issimply thetotal #

of successes (defectives here) in the n = 4(150) = 600 trials.] Substituting this ({ into the
formulafor [ yieldsestimated cell probabilities .1400, .3555, .3385, .1433, and .0227.

Multiplication by 150 yields the estimated expected cell counts are 21.00, 53.33, 50.78, 21.50,
and 3.41. thelast estimated expected cell count islessthan 5, so we combine the last two

categoriesinto asingle one (3 3 defectives), yielding estimated counts 21.00, 53.33, 50.78,
24.91, observed counts 26, 51, 47, 26, and C 2 =1.62. Withdf.=4-1—1=2, since

1.62<c .io,z = 4.605, the p-value > .10, and we do not reject H,. The data suggests that
the stated binomial distributionis plausible.

" =5 = (0)(6)+ (1)24) + (2)(42) +...+ (8)6) +(9)(2) _ 1163 _ o0

=X =
300 300
N 3.88)"
estimated cell probabilities are computed from p = e‘3'88¥
X
X 0 1 2 3 4 5 6 7 38
np(x) 6.2 24.0 46.6 60.3 585 454 294 16.3 133
obs 6 24 42 59 62 44 41 14 8

Thisgives € 2 =7.789. To see whether the Poisson model provides a good fit, we need

C _i0’9_1_1 =C _210'7 =12.017. Since 7.789 <12.017, the Poisson model does provide a
good fit.
| - @ = 3 167 p e- 3.167 (3167)

120 X!

X 0 1 2 3 4 5 6 37

A~

P 0421 A334 2113 2230 1766 1119 0590  .0427
nf) 5.05 1600 2536 2676 2119 1343 7.08 512
obs 24 16 16 18 15 9 6 16

The resulting value of € * =103.98, and when compared to C _fm =18.474, itisobvious
that the Poisson model fits very poorly.
445
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B, = P(X <.100) = PE% A00- 1739 _ £ 4 11)= 135,
066 g
p, = P(100£ X £. 150)_ P(- 1.11£Z £ - .35) =.2297,
p, =P(- .35£Z £.41)=.2959, p, = P(41£ Z £1.17) =.2199, and
Ps =.1210. The estimated expected counts are then (multiply P, by n=83) 11.08, 19.07,

24,56, 18.25, and 10.04, from which € 2 =1.67 . Comparing thiswith

c _35’5_1_2 =C _35’2 =5.992, the hypothesis of normality cannot be rejected.

With A =2n; +ng +ns, B=2n; +n4 + ng, and C = 2n3 + ns + ng, the likelihood is proportional
to ql‘\q (1 q, - ) , where A + B + C = 2n. Taking the natural log and equating both

1 1 A C B C
—— and —— tozerogives — = —  and — = —— , whence
ﬂql ﬂCI2 d, 1- 4, -4, d, 1- d,- 4,
B
q, = ql. =———— andthen
A A+B+C
B ~ _2n+tn,+n, ~  2n,+n, +ng
=——. Thus(, = , = , and
G2 =AY B+C o 2n A2 2n
(1 A) 2n, +n. +ng o ,
ql T Substituting the observed n,’ s yields
T, = 2(49)Zo%0+53:'4275’d2 122 = 2750, and [1- , - G, ) = 2975, from

which p, = (4275)° =.183, p, =.076, p, =.089, p, = 2(.4275)(.275) = .235,
P, =.254, P, =.164.

Category | 1 2 3 4 5 6
np 36.6 152 17.8 470 50.8 328
observed 49 26 14 20 53 33

Thisgives € > = 29.1. With C 15 1., = C 5,5 =11.344, and

c .516_1 =cC 215 =15.085, according to (14.15) H, must be rejected since
29.13 15.085.

The pattern of pointsin the plot appear to deviate from a straight line, a conclusion that is also
supported by the small p-value ( <.01000 ) of the Ryan-Joiner test. Therefore, itis

implausible that this data came from anormal population. In particular, the observation 116.7
isaclear outlier. It would be dangerous to use the one-samplet interval asabasisfor
inference.
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21. The Ryan-Joiner test p-valueislarger than .10, so we conclude that the null hypothesis of
normality cannot be rejected. This data could reasonably have come from anormal
population. This meansthat it would be legitimate to use aone-samplet test to test
hypotheses about the true average ratio.

22.

% Yi X Yi % Yi

69.5 -1.967 755 -.301 79.6 634

719 -1.520 75.7 -199 79.7 761

726 -1.259 75.8 -.099 79.9 901

731 -1.063 76.1 .000 80.1 1.063

733 -901 76.2 .099 822 1259

735 -.761 76.9 199 837 1520

74.1 -.634 77.0 301 937 1.967

74.2 -517 779 407

75.3 -407 78.1 517
n.b.: Minitab was used to calculatethey,’'s. Sx;) =1925.6, Sx(zi) =148871, Sy, =0,
Sy} = 22523, Sx)y;, =103.03, s0
r = 25(103'03) =.923. Sincec; =.9408, and .923 < .9408,

J25(148,871)- (1925 6) [25(25.523)
even at the very smallest significance level of .01, the null hypothesis of population normality
must be rejected (the largest observation appears to be the primary culprit).

23. Minitab givesr = .967, though the hand cal culated value may be slightly different because
when there are ties among the X;y's, Minitab uses the same y, for each x;in agroup of tied
values. Cyg=.9707, and c g5 = 9639, s0.05 < p-value < .10. At the 5% significancelevel, one
would have to consider population normality plausible.

Section 14.3

24, Ho: TV watching and physical fitness are independent of each other

Ha thetwo variables are not independent
Df=4-1)(2-1)=3

witha =.05,RR: ¢ 3 7.815
Computed € 2 = 6.161

Fail torglect Hy. The datafail to indicate an association between daily TV viewing habits and
physical fitness.
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25. Let P; = the proportion of white clover in areaof typei which hasatypej mark (i=1, 2;j =
1,2,3,4,5). ThehypothesisHo: py; =py; forj=1, ..., 5will bergjected at level .01 if

2 2 o
C"3 Coyaysy = Cora =13.277.

m»

i 1 2 3 4 5
1 44966 732 1758 879 24265 | 726  c®=2318
2 47134 768 1842 921 25435 | 76l

921 15 36 18 497 1487

Since 23.18 3 13.277 , H, isrejected.

26. Let pj; = the probability that afruit given treatment i matures and p;, = the probability that a

fruit given treatment i aborts. Then H,: pis =pi2 fori=1, 2, 3, 4, 5will bergected if
c?2cp, =13.277.

Observed Estimated Expected
Matured Aborted Matured Aborted N

141 206 110.7 236.3 347
28 69 309 66.1 97
25 73 313 66.7 9%
24 78 325 695 102
20 82 325 69.5 102

238 508 746

, _ (141- 110.7)

Thus C~ =
110.7
rejected at level .01

2
, (82- 69.5)

2
+ ... =24.82 , whichis3 13.277,soH, is

27. Withi = 1 identified with men and i = 2 identified with women, and j = 1, 2, 3 denoting the 3
categoriesL>R, L=R, L<R, wewish to test Hy: pyj = pyj forj = 1, 2, 3vs. Ha pyj not equal to
po; for at least onej. The estimated cell counts for men are 17.95, 8.82, and 13.23 and for

women are 39.05, 19.18, 28.77, resulting in C * = 44.98. With (2 - 1)(3— 1) = 2 degrees of

freedom, since 44.98 > ¢ _305'2 =10.597 , p-value < .005, which strongly suggests that H,
should be rejected.
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With pj; denoting the probability of atypej response when treatment i is applied, Ho: p1j = pzj
= ps =pa forj =1, 2, 3, 4will berejected at level .005if C > 3 € 5., = 23.587.

E, 1 2 3 4

1 241 100 216 404
2 2538 107 231 433
3 26.1 108 234 438
4 301 125 270 505

c?=27.663 23.587, soreject H, a level .005

Ho: ps1j = ...= pgj for j = 1, 2, 3isthe hypothesis of interest, where p;; is the proportion of thejth
sex combination resulting from theit" genotype. H, will beregjected at level .10 if

c?3 ¢y =15.987.

E | 1 2 3 c 1 2 3

1 | %8 &1 1| 14 2 12 M
2 | 305 918 37| 170 06 66 101
3 | 31 8l5 344 | 151 3 37 %
4 | 98 27 96 | 42 2 4 2%
5 | 51 119 50 | 22 0 06 19
6 | 267 621 262 | 115 o 14 14

152 33 149 | 64 6.46

(carrying 2 decimal placesin Eij yields ¢ 2 =6.49). Since6.46 < 15,987, H, cannot be
rejected at level .10.
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30. Ho: the design configurations are homogeneous with respect to type of failure vs. H,: the
design configurations are not homogeneous with respect to type of failure.

E, 1 2 3 4

1 1611 43.58 18.00 12.32 90

2 7.16 19.37 8.00 547 40

3 10.74  29.05 12.00 821 60

A 92 3 26 190

. _(20-1611° = (5- 821)
16.11 8.21

c .és,e =12.592<13.253< ¢ _5256 =14.440, 50 .025 < p-value < .05. Sincethe p-value

is<.05, wereject H,. (If asmaller significance level were chosen, adifferent conclusion
would be reached.) Configuration appears to have an effect on type of failure.

c =13.253. With 6 df,

31. With | denoting the |t typeofcar (1 =1,2,3,4) andj thejth category of commuting distance,
Ho: pij =pi.pj (type of car and commuting distance are independent) will be rejected at level

05if €% 3 C o5 =12.502.

- 1 2 3

1 10.19 2621 1560 52

2 11.96 3074 1830 61

3 19.40 4990 29.70 9

4 7.45 19.15 11.40 38
49 126 75 250

Eij

c? =14.153 12.592, so the independence hypothesis H, is rejected at level .05 (but not
at level .025!)

, (479 - 494.4) .\ (173- 151.5)° .\ (119 - 125.2)? .\ (214 - 177.07 s (47 - 54.2)°
C 4944 151.5 125.2 177.0 54.2
_(15- 448’  (172-1936)°  (45-59.3] , (85- 49.0)’

44.8 193.6 59.3 49.0
so the independence hypothesisis rejected in favor of the conclusion that political views and
level of marijuanausage are related.

32. c

=64.653 c?

014

=13.277
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~ \2 A ~
(Nij - Eij) Nﬁ - 2N, + Eﬁ SSNS -
33 C 2 = SS ~ = SS ~ = ~ = ZSSN” + SSE” ) but
ij Eij Eij
~ 2
SSEij :SSN”- =n,so % =SS— - n. Thisformulais computationally efficient
i
because there is only one subtraction to be performed, which can be done asthe last stepin
the calculation.

34. Thisisa 3" 3" 3situation, so thereare 27 cells. Only thetotal samplesizenisfixedin
advance of the experiment, so there are 26 freely determined cell counts. We must estimate

P.1,P.2,P.3,P.1, P2, P.3, P1, P2, and pa., but Sp, =3Sp; =3p, =1soonly6
independent parameters are estimated. The rulefor d.f. now gives C % df =26—6=20.

J

LN
35. With pjj denoting the common value of pij1 , Pij2, Pijs, Pija (Under Ho), P =—" and
n

~ NN
ijk

. With four different tables (one for each region), thereare 8 +8+ 8+ 8=232
n

freely determined cell counts. Under Ho, p11, ..., P3z must be estimated but SSpij =1 so
only 8 independent parameters are estimated, giving C 2 of =32-8="24.

36.
a
Observed Estimated Expected
13 19 28 60 12 18 30
7 11 2 40 8 12 20
20 30 50 100
2 2
c? :—(13 12) +___+—(22 20) = 6806 . Because .6806 <c 2,, =4.605,H, is
12 20 o
not rejected.

b. Each observation count hereis 10 timeswhat it wasina, and the sameistrue of the
estimated expected counts so now C 2 =6.806 3 4.605, and H, isrejected. With the

much larger sample size, the departure from what is expected under H,, the independence
hypothesis, is statistically significant — it cannot be explained just by random variation.

c. Theobserved countsare.13n, .19n, .28n, .07n, .11n, .22n, whereas the estimated

expected M = .12n, .18, .30n, .08n, .12n, .20n, yielding ¢ 2 =.006806nN .
n

H, will berejected at level .10iff .006806Nn 2 4.605,i.e,iff N3 676.6, so the

minimum n = 677.
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Supplementary Exercises

37. There are 3 categories here — firstborn, middleborn, (2" or 3 born), and lastborn. With p1,
P2, and p3 denoting the category probabilities, we wish to test Ho: py = .25, p, = .50 (p, = P(2"
or 3 born) = .25 + .25 =.50), p3 =.25. H, will be rejected at significance level .05 if

c?3 ¢, =5992. Theexpected countsare (31)(.25) = 7.75, (31)(.50) = 15.5, and 7.75,
. _[12- 7.75F .\ (11- 15.5)° .\ (8- 7.75)

71.75 155 7.75
rejected. The hypothesis of equiprobable birth order appears quite plausible.

S0 ¢

= 3.65. Because 3.65<5.992, H, is not

38. Let pi; = the proportion of fish receiving treatment i (i = 1, 2, 3) who are parasitized. We wish
to test Hq: pyj =poj =psj forj =1, 2. Withdf = (2—1)(3—1) =2, H, will be rejected at level

oLif ¢*3 cg,, =9.210.

Observed Estimated Expected
30 3 33 2299 10.01
16 8 24 16.72 7.28
16 16 32 229 9.71
62 27 89

Thisgives ¢  =13.1. Because 13.13 9.210, H, should be rejected. The proportion of
fish that are parasitized does appear to depend on which treatment is used.

39. Ho: gender and years of experience are independent; H,: gender and years of experience are
not independent. Df = 4, and we reject Ho if C > 3 C_CZ)L4 =13.277.

Y ears of Experience
Gender 1-3 4-6 7-9 10-12 13+
Male Observed 202 369 482 361 811
Expected 285.56 409.83 475.94 3A7.04 706.63
ﬁ%)z— 24451 4.068 077 .562 15415
Female Observed 230 251 233 164 258
Expected 146.44 210.17 24406 177.96 362.37
ﬁ%)z— 47.680 7.932 51 1.095 30.061

2
c?= Sio'—EEL =131.492. Regect H,. Thetwo variables do not appear to be independent.

In particular, women have higher than expected countsin the beginning category (1 — 3 years)
and lower than expected counts in the more experienced category (13+ years).
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a.  Hy: The probability of alate-game leader winning isindependent of the sport played; Hy:
The two variables are not independent. With 3 df, the computed ¢ ? =10.518, and the

p-value<.015isalso < .05, so we would reject Ho. There appears to be arelationship
between the |ate-game |eader winning and the sport played.

b. Quite possibly: Baseball had many fewer than expected |ate-game leader | osses.

The null hypothesis Ho: pi; = pi. p; states that level of parental use and level of student use are
independent in the population of interest. Thetestisbased on (3—1)(3—1) =4df.

Estimated Expected

1193 57.6 58.1 235
82.8 339 40.3 163
239 115 116 47
226 109 110 445

The calculated valueof € > = 22.4. Since 22.4 > 0%05’4 =14.860, p-value < .005, so

H, should be rejected at any significance level greater than .005. Parental and student use
level do not appear to beindependent.

The estimated expected counts are displayed below, from which ¢ 2 =197.70. A glance at
the 6 df row of Table A.7 shows that this test statistic value is highly significant— the

hypothesis of independenceis clearly implausible.

Estimated Expected
Home Acute Chronic
15-%4 90.2 3725 72.3 535
55-64 1136 469.3 911 674
65—-74 142.7 589.0 1143 846
>74 1575 650.3 126.2 934
504 2081 404 2989
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Thisisatest of homogeneity: Ho: pyj = poj = pg; forj =1, 2, 3, 4, 5. The given SPSS output
reports the calculated € ? = 70.64156 and accompanying p-value (significance) of .0000.

Wereject H, at any significance level. The data strongly supportsthat there are differencesin
perception of odors among the three areas.

The accompanying table contains both observed and estimated expected counts, the latter in
parentheses.

Age
127 118 77 61 M
want a1y (233 (717 (51)  (428) a2
Sortt 23 23 5 2 8 o
189 (177 (103 (79 62)
150 11 2 63 29 285

Thisgives ¢ > =11.603 0.254 =0.488. Atlevel .05, the null hypothesis of

independenceisrejected, though it would not be rejected at the level .01 (.01 < p-value <
.025).

(nl } nplo)2 - (nplO } n1)2 = (n - - n(l' plo))2 - (nz - npzo)z- Therefore
c?= (nl' np10)2 + (nz - np20)2 — (nl' np10)2 3‘14_19
NPy NP2 n; Po  Pxog
_ o &n C_(bl' p10)2_ 2
=Cc—- p = T= =7 .
gn Y ><gplopzob pmpz%

obsv 22 10 5 11

exp 13189 10 7.406 17.405
Ho: probabilities are as specified.
H.: probabilities are not as specified.

(22- 13.189) .\ (10- 10)? .\ (5- 7.406) .\ (11- 17.405)?
13.189 10 7.406 17.405

=5.886+0+0.782 +2.357 = 9.025. Rejection Region: € > C 55, =5.99

Since 9.025 > 5.99, wergject Hy. The model postulated in the exerciseis not agood fit.

Test Statistic: ¢ 2 =
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b.
pi 0.45883 0.18813 0.11032 0.24272
exp 22,024 9.03 5.295 11.651
02 = (22- 22.024)* | (10- 9.08)° | (5- 5295)"  (11- 11.651)°
22024 9.03 5.295 11.651

=.0000262 +.1041971+.0164353 +.0363746 = .1570332
With the same rejection region asin a, we do not reject the null hypothesis. This model
does provide agood fit.

47.
a.  Our hypotheses are Hy: no differencein proportion of concussions among the three

groups. Vs Hg: thereisadifference ...

No
Observed Concussion Concussion Total
Soccer 45 46 a1
Non Soccer 28 68 96
Control 8 45 53
Total 81 159 240
No
Expected Concussion Concussion Total
Soccer 30.7125 60.2875 91
Non Soccer 34 63.6 96
Control 17.8875 37.1125 53
Total 81 159 240

. _ (45- 30.7125)° (46- 60.2875)°  (28- 324)° (68- 636)

C =
30.7125 60.2875 324 63.6
2 2
+ (8_ 17'8875) + (45- 37'1125) =19.1842. Thedf for thistest is (I — 1)(J—
17.8875 37.1125

1)=2,sowergect Hoif C° > €55, =5.99. 19.1842> 599, sowereject Ho. There
isadifference in the proportion of concussions based on whether a person plays soccer.

b. Wearetesting the hypothesisHg:r =0vsHa r ?0. Thetest statisticis

(= r¥n-2 _ - .22./89 :

= «/ - _J - =-2.13. Atsignificancelevel a =.01, we would fail to
1-r 1-.22

reject and conclude that thereis no evidence of non-zero correlation in the population. If
we were willing to accept a higher significance level, our decision could change. At best,
there is evidence of only weak correlation.
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We will test to see if the average score on a controlled word association test is the same
for soccer and non-soccer athletes. Ho: U1 =2 VSHg: g ? 2 . WE'll use test statistic

7 _ v 2 2
=2 B %) S o =1.854.

i N i m n
m n
2
(= 18750 3963) _ op g (3'202+1'854)2 » 56 . The p-value will
+/3.206 +1.854 3.206" | 1.854

25 955
be > .10, so wedo not reject Hg and concludethat thereis no differencein the average
score on the test for the two groups of athletes.

Our hypothesesfor ANOVA are Hg: al means are equal vs Hy: not all meansare equal.

o MSTr
Thetest statisticis f = .
MSE
SSTr =91(.30- .35)* +96(.49- .35)* + 53(.19- .35)* =3.4659
MSTr = 3.4659 =1.73295
SSE = 90(.67)? + 95(.87)* + 52(.48)* =124.2873 and
MSE = 124.2813 =.5244 . Now, f = 1.73295 =3.30. Using df 2,200 from
237 5244

table A.9, the p valueis between .01 and .05. At significance level .05, we reject the null
hypothesis. Thereissufficient evidence to conclude that there isadifferencein the
average number of prior non-soccer concussions between the three groups.

Ho: po=p1=... =pg =.10vsHy: at least one p; ?.10, with df = 9.
Ho: pij =.01 forlandj=1,2,...,9 vsHy at least one p;; ?0, with df = 99.

For this test, the number of p’sin the Hypothesis would be 10° = 100,000 (the number of
possible combinations of 5 digits). Using only the first 100,000 digits in the expansion,
the number of non-overlapping groups of 5is only 20,000. We need amuch larger
sample size!

Based on these p-values, we could conclude that the digits of p behave as though they
were randomly generated.



CHAPTER 15

Section 15.1

1. Wetest H, : m=100 vs. H, :m? 100. Thetest statisticiss, = sum of the ranks
associated with the positive values of (X - 100), and wereject H, at significance level .05
if S, 3 64. (fromTableA.13,n=12,witha /2 =.026, which is close to the desired

12(13
vaueof . 025), or if S, £¥- 64=78- 64=14.

X (x - 100)  ranks

105.6 5.6 ™
90.9 91 12
912 -8.8 1
9.9 -31 3
9.5 -35 5
913 -8.7 10
100.1 0.1 iy
105 5 6*
9.6 -04 2
107.7 1.7 o
1033 33 4*
924 -7.6 8

S, =27, and since 27 isneither 3 64 nor £ 14, we do not reject H,. Thereis not enough
evidence to suggest that the mean is something other than 100.

2. Wetest H, :m=25vs. H, : m>25. withn=5anda » .03, reject H, if S, 3 15.

From the table below we arrive at s, =1+5+2+3 = 11, which isnot 3 15, so do not reject H,.
Itisstill plausible that the mean = 25.

X (x, - 25)  ranks
258 08 1*
366 11.6 5*
263 13
21.8 -32 4
272 22 3
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Wetest H, : m=7.39 vs. H, : m? 7.39, soatwo tailed test is appropriate. Withn=
14and a /2 =.025, Table A.13 indicates that H, should be rejected if either

s, 3 84or £21. The (x, - 7.39)’sare-.37,-.04,-.05,-.22, -.11, .38, -.30, -.17, .06, - 44,
.01, -.29, -.07, and -.25, from which the ranks of the three positive differencesare 1, 4, and 13.
Since S, =18 £ 21, H,isrejected at level .05.

The appropriatetestis H, : m=30 vs. H, : m<30. Withn=15,anda =.10, reject

Ho if sﬁ@- 83=37.

X, (x - 30) ranks X; (x - 30) ranks
30.6 0.6 3* 319 19 5*

301 0.1 1* 53.2 232 15*

15.6 -144 12 125 -175 13

26.7 -3.3 7 232 -6.8 11

271 -29 6 8.8 -21.2 14

254 -4.6 8 249 51 10

35 5 o* 30.2 0.2 2*

308 0.8 4*

S, =39, whichisnot £ 37, so H, cannot be rejected. Thereis not enough evidence to prove
that diagnostic timeisless than 30 minutes at the 10% significance level.

The datais paired, and wewishtotest Hy : m, =0 vs. H, :m, * 0. withn=12and
a =.05, H, should be rejected if either S, 3 64orif S, £14.

di -3 28 39 6 12 -11 29 18 5 23 9 25
rank 1 0 1> 3 6* 5 11* ™ 2* 8 4 g

S, =72,and 723 64, s0H,isrejected at level .05. Infactfor @ =.01, the critical value
isc=71,soevenatlevel .01 Hy would be rejected.
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Wewishtotest Hy :m, =5 vs. H, :my > 5, where My =m,. - Myire- Withn=9
and @& » .05, H, will bergectedif S, 3 37. Asgiveninthetable below, S, = 37, which

is3 37, sowe can (barely) reject H, at level approximately .05, and we conclude that the
greater illumination does decrease task completion time by more than 5 seconds.

d d-5 rank d, d-5 rank
7.62 2.62 3* 16.07 11.07 o*
8 3 4* 84 34 5*
9.09 409 8* 8.89 3.89 ™
6.06 1.06 1* 2.88 -2.12 2
1.39 -3.61 6

Hy,:mp =.20vs. H, :my >.20, where My = Myy000r = Migoor- @ = -09, and
S - n(n+l

because n = 33, we can use the large sample test. Thetest statisticis Z = — 4 , and
g p n{n+1){2n+L
\ 24

wergject Ho if 23 1.96.

d, d-.2 rak d d-.2 rank d, d-.2 rank
0.22 0.02 2 0.15 -0.05 55 0.63 043 23
0.01 -0.19 17 137 117 32 0.23 0.03 4

0.38 0.18 16 0.48 0.28 21 0.96 0.76 31

042 0.22 19 011 -0.09 8 0.2 0 1

0.85 0.65 29 0.03 -0.17 15 -0.02 -0.22 18
0.23 0.03 3 0.83 0.63 28 0.03 -0.17 14
0.36 0.16 13 1.39 119 33 0.87 0.67 30
0.7 05 26 0.68 0.48 25 0.3 0.1 95
0.71 051 27 0.3 0.1 95 031 011 11
0.13 -0.07 7 -0.11 -0.31 2 045 0.25 20
0.15 -0.05 55 0.31 011 12 -0.26 -0.46 24

_424- 2805 _ 1435

~ J313225 55.9665

at significance level .05.

S, =434 ,s0 2 = 2.56. Since 2.563 1.96, weregject H,
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Wewishtotest Hy : m=75vs. H, : m>75. Sincen=25thelarge sample

approximation is used, so H, will berejected at level .05if z3 1.645. The ()(i - 75)'8 are
-55,-31,-24,-19,-1.7,15,-9,-8, .3,5,.7,.8,11,12,12,19,20,29,31,46,4.7,5.1,
7.2,8.7,and 18.7. Theranks of the positive differencesare 1, 2, 3,4.5, 7, 8.5, 8.5, 12.5, 14,

(n+1)

n .
16, 17.5, 19, 20, 21, 23, 24, and 25, s0'S, = 226.5 and =162.5. Expression (15.2)

for S 2 should be used (because of theties): t, =t , =t ; =t , =2, so

s?= 25(2264)(5 ) - 4(1)1(12)(3) =1381.25- .50=1380.75 ands =37.16. Thus

7= 226.5- 162.5
37.16

p- value»1l-F (1.72) =.0427 . Thedataindicates that true average toughness of the
steel does exceed 75.

=1.72. Since 1.723 1.645, H, isrejected.
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When H, istrue, each of the above 24 rank sequencesis equally likely, which yields the
distribution of D when H, istrue as described in the answer section (e.g., P(D = 2) = P( 1243

or 1324 or 2134) = 3/24). Thenc=0yieldsa =-}; =.042 whilec=2implies
a =+ =.167.

Section 15.2

10.

The ordered combined sampleis 163(y), 179(y), 213(y), 225(y), 229(x), 245(x), 247(y),

250(x), 286(x), and 299(x), sow =5+ 6+ 8+ 9+ 10=38. Withm=n=5, Table A.14 gives
the upper tail critical value for alevel .05 test as 36 (reject Hy if W 3 36). Since 383 36,
Ho isrejected in favor of H,,
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12.

13.

14.
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With X identified with pine (corresponding to the smaller ssmple size) and Y with oak, we
wishtotest Hy:m - m, =0vs. H, :m - m,* 0. FromTableA.14withm=6andn
=8, H, isrejected in favor of H, at level .05 if either W3 61 orif WE 90- 61 =29 (the
actual a is2(.021) =.042). The X ranksare 3 (for .73), 4 (for .98), 5 (for 1.20), 7 (for 1.33),

8 (for 1.40), and 10 (for 1.52), sow = 37. Since 37 isneither 3 61 nor £ 29, H, cannot be
rejected.

The hypotheses of interestare H, :m - m, =1vs. H, : m - m, >1, where 1(X) refers
tothe original processand 2 (Y) to the new process. Thus 1 must be subtracted from each x
before pooling and ranking. At level .05, H, should be rejected in favor of Haif W3 84 .

x—1 35 41 44 4.7 53 56 75 7.6

rank 1 4 5 6 8 10 15 16
y 38 4.0 49 55 57 58 6.0 70
rank 2 3 7 9 11 12 13 14

Sincew = 65, H, is not rejected.

Herem=n =10 > 8, so we use the large-sampl e test statistic from p. 663.
Hy :m - m, =0 will berejected at level .0Linfavorof H, :m - m, 1 O if either
z3 258 or z£ -2.58. Identifying X with orangejuice, the X ranksare 7, 8, 9, 10, 11,

m+n+1
16, 17, 18, 19, and 20, sow = 135. With % =105 and
mnim+n+1

12 .
3 2.58 nor £ - 2.58, Hyisnot rejected. p- value» 2(1- F (2.27)) =.0232.

_135- 105

=4/175 =13.22, z= = 2.27. Because 2.27 is neither

X 82 95 95 9.7 100 145 152 161 176 215
rank 7 9 9 11 125 16 17 18 19 20

y 4.2 52 58 6.4 70 7.3 95 100 115 115
rank 1 2 3 4 5 6 9 125 145 145

The denominator of z must now be computed according to (15.6). Witht, = 3.t ) = 2,
t,=2, s 2=175-.02192(3)(4) + 1(2)(3) +1(2)(3)] =174.21, so

7= 138.5- 105

NJ174.21

= 2.54. Because 2.54 isneither 3 2.58 nor £ - 2.58 , H, is not

rejected.
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15. Let M and IM, denote true average cotanine levels in unexposed and exposed infants,
respectively. The hypotheses of interestare H, : m - m, =-25 vs.
H,:m-m, <-25. withm=7,n=8, H, will berejected at level .05 if

wE 7(7 +8 +1) - 71=41. Beforeranking, -25 is subtracted from each x, (i.e. 25is

added to each), giving 33, 36, 37, 39, 45, 68, and 136. The corresponding ranksin the

combined set of 15 observationsare 1, 3, 4,5, 6, 8, and 12, fromwhichw=1+3+ ...+ 12=

39. Because 39 £ 41, H, isrejected. The true average level for exposed infants appears to

exceed that for unexposed infants by more than 25 (note that H, would not be rejected using

level .01).

16.
a
X rank Y rank
043 2 147 9
117 8 0.8 7
0.37 1 158 11
047 3 153 10
0.68 6 433 16
0.58 5 423 15
05 4 325 14
275 12 322 13
We verify that w = sum of the ranks of the x’s=41.

b. Wearetesting Hy:m- m, =0vs. H, :m - m, <0. Thereported p-value
(significance) is.0027, which is< .01 so weregject H,. Thereis evidencethat the
distribution of good visibility response timeisto the left (or lower than) that response
time with poor visibility.

Section 15.3
17. n =28, so from Table A.15, a95% C.I. (actually 94.5%) hastheform

(i(%_ 32+1)) )_((32)) = ()_((5) : )_((32)). Itiseasily verified that the 5 smallest pairwise averages are

5.0+50 _ o 50 +211.8 _ 840, % _860. @ =11.00, and

LO+1/.
M =11.15 (the smallest average not involving 5.0 is Xe) = % =11.8),

and the 5 largest averages are 30.6, 26.0, 24.7, 23.95, and 23.80, so the confidence interval is
(11.15, 23.80).
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n(n+1)

Withn =14 and =105, from Table A.15 we se that ¢ = 93 and the 99% interval is

(i(13) , )_((93)) . Subtracting 7 from each x and multiplying by 100 (to simplify the arithmetic)
yields the ordered values-5, 2, 9, 10, 14, 17, 22, 28, 32, 34, 35, 40, 45, and 77. The 13
smallest sumsare—10,-3,4, 4, 5,9, 11, 12, 12, 16, 17, 18, and 19 ( s0

= 14.19
Xaz) = T = 7.095) whilethe 13 largest sums are 154, 122, 117, 112, 111, 109, 99, 91,

87,and 86 (S0 Xg3) = % =7.430) . Thedesired C.I. isthus (7.095, 7.430).

, n(n + 1)
The ordered di’sare—13, -12, -11, -7, -6; with n = 5 and T =15, Table A.15 shows

. — , -13-13
the 94% C.|. as(sincec = 1) (d(l),d(lS)). The smallest averageis clearlly ———— =

while the largest is =-6,s0theC.l.is(-13, -6).

For n=4Table A.13 shows that atwo tailed test can be carried out at level .124 or at level
.250 (or, of course even higher levels), so we can obtain either an 87.6% C.I. or a75% C.I.

With @ =10, the 87.6% interva is (X, X)) = (045,.177).

m=n=>5and from Table A.16, c = 21 and the 90% (actually 90.5%) interval is
(dy(g),dy(2y)- Thefivesmallest X, -y differencesare-18,-2, 3, 4, 16 whilethefive
largest differences are 136, 123, 120, 107, 86 (construct atable like Table 15.5), so the
desired interval is (16,86) .

m =6, n =8, mn =48, and from Table A.16 a 99% interval (actually 99.2%) requiresc =44
and theinterval is (dij(S)’dij(44))' Thefivelargest X; - Y, 'sare152-.48=104,1.40- 48
=.92,152-.67=.85,133-.48=.85and 1.40 - .67 = .73, while the five smallest are—1.04,
-.99, -.83,-.82, and-.79, so the confidence interval for M) - M, (where M refersto pine

and M, refersto oak) is(-.79, .73).

-13
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Section 15.4

23.

24,

25.

Below we record in parentheses beside each observation the rank of that observation in the
combined sample.

1 58(3) 6.1(5) 6.4(6) 6.5(7) 7710 r, =31
2 7.1(9) 88(12) 99(14)  105(16)  112(17) r, =68
3 5.191) 57(2) 59(4) 6.6(8) 8211) r, =26
4 95(13) 10315  117(18)  121(19)  12420) r, =85

Ho will berejected at level .10if K 3 C.io,s =6.251. The computed value of k is

12 é31° +68% + 262 +85° ()
- oL 108 1267 *8 B o21) =14.06. Since 14.06° 6.251. rejec
20(21) & 5 o

Ho.

After ordering the 9 observation within each sample, the ranksin the combined sample are

1 1 2 3 7 8 16 18 2 27 r =104
2 4 5 6 11 12 21 3 3% 36 r,=160
3 9 10 13 14 15 19 28 B 35 r,=176
4 7 20 28 24 2 26 29 30 3R r,=226

Atlevel .05, Hy:m =m, =m, =m, will berjectedif K 3 € 55, = 7.815. The

12 E104% +160° +1762 + 2267 0
S o- 3(37)=7.587. since
36(37) & 5 0

7.587isnot 3 7.815, H, cannot be rejected.

computed k is K =

Ho:m =m, = m will berejected at level .05if K 3 C 5, = 5.992. Theranksarel,

3,4,5,6,7,8,9, 12, 14 for thefirst sample; 11, 13, 15, 16, 17, 18 for the second; 2, 10, 19,
20, 21, 22 for the third; so the rank totals are 69, 90, and 94.

__ 12 ¢69° 90° 94%u
22(3)§10 6 5§

- 3(23) = 9.23. since 9.232 5.992, wereject Ho.
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26.
1 2 3 4 5 6 7 8 9 10 r r?
Al2 2 2 2 2 2 2 2 2 2 20 400
Bl1 1 1 1 1 1 1 1 1 1 10 100
C|l 4 4 4 4 3 4 4 4 4 4 39 1521
D|3 3 3 3 4 3 3 3 3 3 31 961
2982
The computed value of F, is _12 (2982) - 3(10)(5) =28.92, whichis
4(10)(3)
3 C.c2>L3 =11.344, so H, isrejected.
27.
1 2 3 4 5 6 7 8 9 10 r r?
ll1 2 3 3 2 1 1 3 1 2 19 361
H|lz2 1 1 2 1 2 2 1 2 17 289
3 3 2 1 3 3 3 2 3 1 24 576
1226

The computed value of F; is 12 (1226) - 3(10)(4) = 2.60, which is not

10(3)(4)

c .35,2 =5.992, so don't reject Ho.

Supplementary Exercises

28. The Wilcoxon signed-rank test will beusedtotest Hy : 1My =0 vs. Hy :my 1 O, where

M, = the difference between expected rate for apotato diet and arice diet. From Table A.11

with n =8, H, will berejected if either S, 3 32 or S, £¥- 32=4.Thed,'s are(in

order of magnitude) .16, .18, .25, -.56, .60, .96, 1.01, and—1.24, so

S, =1+2+3+5+6+7 =24. Because 24 isnot in the rejection region, H, is not

rejected.
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29. Friedman’stest is appropriate here. At level .05, H, will berejectedif f, 3 C.és,s =7.815.
Itiseasily verifiedthatr, =28,r, =29,r, =16, r, =17, fromwhich the defining

formulagives f, =9.62 and the computing formulagives f, =9.67 . Because
f, 37815, H,:a, =a, =a, =a ,=0isrejected, and we conclude that there are

effects due to different years.

30. The Kruskal-Wallistest is appropriate for testing H0 m=m,=m =m,. H,will be
rejected at significancelevel .01if k 3 ¢ 3, =11.344

Treatment ranks I
[ 4 1 2 3 15
Il 8 7 10 6 9 40
" 1 15 14 12 13 65
v 16 20 19 17 18 0

_ 12 é225+1600 + 4225 + 8100 U

k = g
420 & 5 H
Ho.

63 =17.86. Because 17.86°3 11.344 , rgject

31. From Table A.16, m = n=5impliesthat ¢ = 22 for aconfidence level of 95%, so
mn- c+1=25- 22=1=4. Thusthe confidenceinterval extends from the 4"
smallest difference to the 4" largest difference. The 4 smallest differencesare—7.1,-6.5,-6.1,
-5.9, and the 4 largest are—3.8, -3.7,-3.4,-3.2, so the C.I. is (-5.9, -3.8).
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a Hy:m- m, =0 will bergjectedinfavorof H, :m - m, * O if either W3 56 or
WE 6(6+7+1)- 56=28.
Gait D L L D D L L
Obs .85 .86 1.09 124 127 131 139

Gait D L L L D D
obs 145 151 153 164 166 182

w=1+4+5+8+12+13=43. Because43isneither 3 56 nor £ 28, we don't
reject Ho. There appears to be no difference between 1M and M, .

Differences
Lateral Gait
.86 109 131 139 151 153 16e4
.85 01 24 46 54 .66 .68 .79
Diagonal 124 |-38 -15 .07 15 27 29 40
gait 127 (-4 -18 4 12 24 .26 37
145 |-59 -36 -14 -06 .06 .08 19
166 |-80 -57 -3 -27 -15 -13 -02
182 (-9 -73 -51 -43 -31 -29 -18

From Table A.16,c=35and MN- C+1=8 giving (-.41, .29) asthe C.I.

a.  With“success’ asdefined, then'Y isabinomial with n=20. To determine the binomial
proportion “p” we realize that since 25 is the hypothesized median, 50% of the
distribution should be above 25, thusp = .50. From the Binomial Tables (Table A.1)
with n =20 and p = .50, we see that

a =P(Y315)=1- P(Y £14)=1- .979 =.021.

b. From the same binomia table asina, we find that
P(Y 3 14)=1- P(Y £13) =1- .942 = .058 (acloseaswecan get t0 .05), S0

¢ = 14. For this data, we would reject H, at level .058if Y 3 14.Y = (the number of
observationsin the sample that exceed 25) = 12, andsince 12 isnot 3 14, wefail to
reject Ho.
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a. Usingthesamelogic asin Exercise 33, P(Y £ 5) =.021, and P(Y 3 15) =.021,
so the significancelevel isa =.042 .

b. Thenull hypothesiswill not be rejected if the median is between the 6" smallest
observation in the data set and the 6" largest, exclusive. (If the medianislessthan or
equal to 14.4, then there are at least 15 observations above, and we reject H,. Similarly,
if any value at least 41.5 is chosen, we have 5 or less observations above.) Thuswith a
confidence level of 95.8% the median will fall between 14.4 and 41.5.

Sample vy X y y X X X y y
Observations. 3.7 40 41 43 44 48 49 51 56
Rank: 1 3 5 7 9 8 6 4 2

Thevalue of W’ for thisdatais W(=3+ 6+ 8+ 9 = 26 . Atleve .05, the critical value

for the upper-tailed test is(Table A.14, m=4,n=5)c=27(a =.056). Since 26 isnot

3 27 ,H, cannot be rejected at level .05.

The only possible ranks now are 1, 2, 3, and 4. Each rank tripleis obtained from the

corresponding X ordering by the“code” 1=1,2=2,3=3,4=4,5=3,6=2,7=1(s0eg.

the X ordering 256 corresponds to ranks 2, 3, 2).

X ranks w X ranks w’ X ranks w

ordering ordering ordering

123 123 6 156 132 66 267 221 5
124 124 7 157 131 5 345 343 10
125 123 6 167 121 4 346 342 9
126 122 5 234 234 9 347 341 8
127 121 4 235 233 8 356 332 8
134 14 8 236 232 7 357 331 7
135 133 7 237 231 6 367 321 6
136 132 6 245 243 9 456 432 9
137 131 5 246 242 8 457 431 8
145 143 8 247 241 7 467 421 7
146 142 7 256 232 7 567 321 6
147 141 6 257 231 6

Since when H, istrue the probability of any particular ordering is 1/35, we easily obtain the
null distribution and critical values given in the answer section.



CHAPTER 16

Section 16.1

1. All ten values of the quality statistic are between the two control limits, so no out-of-control
signal is generated.

2. All ten values are between the two control limits. However, it isreadily verified that all but
one plotted point fall below the center line (at height .04975). Thus even though no single
point generates an out-of-control signal, taken together, the observed values do suggest that
there may be a decrease in the average value of the quality statistic. Such a“small” changeis
more easily detected by a CUSUM procedure (see section 16.5) than by an ordinary chart.

3. P(10 successive points inside the limits) = P(1% inside) x P(2" inside) x...x P(10" inside) =
(.998)1° = .9802. P(25 successive pointsinside the limits) = (.998)% = .9512. (.998)>? =
9011, but (.998)> = .8993, so for 53 successive points the probability that at least one will
fall outside the control limits when the processisin control is 1 - .8993 =.1007 > .10.

Section 16.2

4. For Z, astandard normal random variable, P(- CEZE C) =.995 implies that

F (C) = P(Z £ C) =.995+ % =.9975. TableA.3thengivesc=2.81. The

appropriate control limits are therefore I+ 2.81s .

a.  P(point falsoutside the limitswhen m= 1, +.5S )

e > o 3> 0
=1- Pgny, - = <X <m, +—=whenm=m, +.56 =

E Jn Jn i o
=1- P- 3- 5/n<Zz<3- 5n)

=1- P(- 412<Z <1.882) =1- .9699 = .0301.

b. 1- Pgaem,- <X <m, +£whenm=m)-sg

>
Jn Jn o
=1- P|- 3+n <Z <3+/n) =1- P(- .76 <Z <5.24) = 2236

¢ 1- Pl 3- 2/n <z <3- 2Jn)=1- P(- 7.47<Z <-1.47) = 6808
469
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Thelimitsare 13.00 + i«/(;) =13.00 .80, fromwhich LCL = 12.20 and UCL = 13.80.

Every one of the 22 X valuesiswell within these limits, so the process appearsto bein
control with respect to location.

X =12.95 and 5=.526, sowith &, =.940, the control limitsare

12.95+3 526

== 12.95+ .75 =12.20,13.70. Again, every point (X) is between

these limits, so there is no evidence of an out-of-control process.

I =1.336 and b, = 2.325, yielding the control limits

1295+ 32:;ﬁ =12.95+.77=12.1813.72. All points are between these limits,

25,5

so the process again appears to be in control with respect to location.

X = 2317.07 =96.54,5=1.264, and a5 =.952, giving the control limits
1.264 - g .
96.54+3 =96.54+1.63=94.91,98.17. Thevaueof X onthe 22" day lies
.952,/6

abovethe UCL, so the process appearsto be out of control at that time.

Now X = 2317'0;?: 9834 =96.47 and S= 30.34- 1.60 =1.250, giving the limits
96.47+3 1.250

5 =96.47+1.61=94.86,98.08. All 23 remaining X valuesare

between these limits, so no further out-of-control signals are generated.

a Paem)-z'815 <X<m+= whenm—mjg
& I 5
= P(- 2.81<Z <2.81)=.995, sothe probability that apoint falls outside the limits

is.005and ARL ZL = 200.
.005
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b. P=P(apointisoutsidethelimits)

x 28]5 0
whenm=m, +s =

“’E % 5
(-
(-

<)T<rrb+2

- P 281- Jﬁ<z<281 Jn)

- P(- 481<Z< 81) 1-.791=.209. Thus ARL =%=4.78

1
c. 1-.9974=.0026s0 ARL = ——— =385 for anin-control process, and when
.0026
M= m, +S , the probability of an out-of-control pointis1- P(-3- 2<Z <1)
1
=1- P(Z <1)=.1587,s0 ARL =——— =6.30
.1587
14
3.0SL=13.70
- 2.0SL=13.45
g . * r 1.0SL=13.20
o B : e | X=12.95
S hd .
5 o * e -1.0SL=12.70
n [ ]
-2.0SL=12.45
-3.0SL=12.20
2 = T T
0 10 20

Sample Number

The 3-sigmacontrol limits are from problem 7. The 2-sigmalimitsare

12.95+ .50 =12.4513.45, and the 1-dgmalimitsare 12.95+ .25 =12.7013.20. No

pointsfall outside the 2-sigmalimits, and only two pointsfall outside the 1-sigmalimits.
There are also no runs of eight on the same side of the center line — the longest run on the
same side of the center lineisfour (the points at times 10, 11, 12, 13). No out-of-control
signals result from application of the supplemental rules.

X =12.95,1QR = 4273, k; =.990. Thecontrol limitsare

12,05+ 33273
.990./5

=12.4513.45=12.37,13.53.
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Section 16.3

14.

15.

16.

17.

18.

— 4895
Ss =4.895 and s = Y =.2040. with a5 =.940, the lower control limit is zero

3(.2040/1- (.940)°
940

s, is between these limits, so the process appears to bein control with respect to variability.

and the upper limit is .2040 + =.2040 +.2221 =.4261. Every

85.2

a I = o - 2.84,b, =2.058, and c, =.880. Sincen=4,LCL =0and UCL
=284+ M =2.84+3.64=6.48.
2.058
b. =354, =2.844,and c; =.820, and the control limits are
=354+ w =3.54+3.06 = .48,6.60.
2.844

§=.5172, a; =.940,LCL =0(sincen=5) and UCL =

3(5172),/1- (.940)’
940

so al pointsfall between the control limits.

5172+ =.5172+.5632 =1.0804 . Thelargest s is s =.963,

§=1.2642, a5 =.952, and the control limitsare

Lo6ans 3(1.2642)/1- (.952)°
B 952

S0 = .75, and the largest is s1, = 1.65, so every value is between .045 and 2.434. The process
appearsto bein control with respect to variability.

=1.2642+1.2194 = .045,2.484 . Thesmallests is

S = 30.9944 and 52 = 22044

(1.6664)(20.515)

(1.6664)(.210)

=1.6664,s0LCL = =.070,

and UCL = = 6.837. Thesmallest s valueis 2, = (.75)° =.5625

and the largest is S5, = (1.65)2 =2.723, 504l S*'S arebetween the control limits,
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Section 16.4
p . +..+
19. E=S& where Sp. =ﬁ+...+X—k= al X =578=5.78. Thus
k n n n 100
p=>8- o3,
25
a.  Thecontrol limitsare .231+ 3, /—:23:::: 0 0769 =.231+.126 =.105,.357.
13 . . 39 .
b. —— =.130, which is between the limits, but — = .390, which exceeds the upper
100 100

20.

21.

control limit and therefore generates an out-of-control signal.

Sx 567
nk  (200)(30)

.094513,/—:'0%'2 :0:(;3055: =.0945+.0621 =.0324,.1566 . Thesmallest X; is

X, =7, with p, :ﬁ =.0350. This (barely) exceedsthe LCL. Thelargest X; is

Sx; =567, fromwhich p = =.0945. The control limitsare

Xg = 37, with p; = % =.185. Thus p; >UCL =.1566, so an out-of-control

signal is generated. Thisisthe only such signal, since the next largest X; is X,; = 30, with

N 30
=——=.1500 <UCL.
P2s 200

pi- p
n

LCL >Owhen P > ,i.e. (after squaring both sides) 502 > 3ﬁ(1- [_)) e

50p >3(1- P).ie 53p>3pP P :5—3; =.0566.
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The suggested transformationis Y = h(X) =gn 1(JX_A) with approximate mean value

an 1(«/6) and approximate variance 4i sn '1(M)= sn '1(\ .050) =.2255 (in
n

radians), and the valuesof Y, =9n 1(\/%) fori=123,...,30ae

0.2255 0.2367 0.2774 0.3977
0.3047 0.3537 0.3381 0.2868
0.3537 0.3906 0.2475 0.2367
0.2958 0.2774 0.3218 0.3218
0.4446 0.2868 0.2958 0.2678
0.3133 0.3300 0.3047 0.3835
0.1882 0.3047 0.2475

0.3614 0.2958 0.3537

Thesegive Sy, =9.2437 and ¥ =.3081. The control limitsare
y* 3\/% =.3081+ 3, /45 =.3081+.1091 =.2020,.4142 . In contrast ot the result of

exercise 20, there | snow one point below the LCL (.1882 < .2020) as well as one point above
the UCL.

Sx, =102, X = 4.08, and X+ 34/X = 4.08+ 6.06 » (- 2.0,10.1). ThusLCL =0and
UCL =10.1. Becauseno X; exceeds 10.1, the processis judged to bein control.

X- Y<Oisequivalentto«/§<3,i.e.Y<9.

With U; = i ,the U, 'S are 3.75, 3.33, 3.75, 250, 5.00, 5.00, 12.50, 12.00, 6.67, 3.33, 1.67,
9i

3.75, 6.25, 4.00, 6.00, 12.00, 3.75, 5.00, 8.33, and 1.67 for | = 1, ..., 20, giving U = 5.5125.

For g, =.6,U+3 |~ = 55125+ 0.0933,LCL=0,UCL = U6 For g, =.8,

cl

u
+3 /g— =5.5125+7.857,LCL =0,UCL =134.For g, =1.0,

f ua
ux3 g— =5.5125+7.0436,LCL=0,UCL =126. Severd U, 'S arecloseto the

corresponding UCL’ s but none exceed them, so the processisjudged to bein control.
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26. Y, = 24X andthe Y;'S are3/46,5.29, 447, 4.00, 2.83, 5.66, 4.00, 3.46, 3.46, 4.90, 5.29,
2.83, 346, 2.83, 4.00, 5.29, 3.46, 2.83, 4.00, 4.00, 2.00, 4.47,4.00, and 4.90for 1 =1, ..., 25,
fromwhich Sy, =98.35 and Y =3.934. Thus Y+ 3=3.934+ 3=.934,6.934.

Since every Y, iswell within these limitsit appears that the processisin control.

Section 16.5

27 m =16k =§ =005, h =20, d, =ma(0,d , +( - 16.05)),
e =max(0,e_, +(X - 15.95)).

| X; - 16.05 di X, - 15.95 €
1 -0.058 0 0.024 0
2 0.001 0.001 0.101 0
3 0.016 0.017 0.116 0
4 -0.138 0 -0.038 0.038
5 -0.020 0 0.080 0
6 0.010 0.010 0.110 0
7 -0.068 0 0.032 0
8 -0.151 0 -0.054 0.054
9 -0.012 0 0.088 0
10 0.024 0.024 0.124 0
11 -0.021 0.003 0.079 0
12 -0115 0 -0.015 0.015
13 -0.018 0 0.082 0
14 -0.090 0 0.010 0
15 0.005 0.005 0.105 0

For notimer isit the casethat d, >.20 or that €, > .20, so no out-of-control signalsare
generated.
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28. m =.75k :% =0.001, h =.003, d, = max(0,d, , + (X, - .751)),
g = max(O,q_1 +()_(i - .749)).

i x-.751  d X, - .749 e
1 -.0003 0 0017 0
2 -.0006 0 0014 0
3 -.0018 0 .0002 0
4 -.0009 0 0011 0
5 -.0007 0 0013 0
6 .0000 0 .0020 0
7 -.0020 0 .0000 0
8 -.0013 0 .0007 0
9 -.0022 0 -.0002 0002
10 -.0006 0 0014 0
1u .0006 .0006 0026 0
12 -.0038 0 -.0018 0018
13 -.0021 0 -.0001 0019
14 -.0027 0 -.0007 0026
15 -.0039 0 -.0019 .0045*
16 -.0012 0 .0008 0037
17 -.0050 0 -.0030 0067
18 -.0028 0 -.0008 0075
19 -.0040 0 -.0020 0095
20 -.0017 0 .0003 0092
21 -.0048 0 -.0028 0120
2 -.0029 0 -.0009 0129

Clearly €, =.0045 >.003 = h, suggesting that the process mean has shifted to avalue
smaller than the target of .75.

29. Connecting 600 on the in-control ARL scale to 4 on the out-of-control scale and extending to
D/2 .00

0
s /Jn  .005//n

«/— =2.175Pb n=4.73=s. Thenconnecting .87 onthek’ scale to 600 on the out-of-
control ARL scale and extending to h' givesh’ = 2.8, so

&s 0 20050
h=¢c—=H2.8)=¢——={2.8) =.00626.
E s ) &5 5 )

thek’ scalegivesk’ =.87. Thus k¢= from which
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30. In control ARL = 250, out-of-control ARL = 4.8, from which
k=72 D12 _ 812 AN 4 n=106% 2. Thent - 285,
s/Jn si/in

s &
giving h = £——X2.85) = 2.015% .
Ens

Section 16.6
31. For the binomial calculation, n = 50 and wewish
a3006 aé
P(X £2)=¢ =p°(1- p)*° + =p?(1-
(x £2) £o3P (- p) gz 27(1- p)®

= (- p)* +50p(1- p)* +1225p> (1- p) whenp=.01,.02, ...,.10. For the
hypergeonetric calculation

aéfloa§00 Mo aM@00- Mg aM @00- Mo

P(X £2)= go ﬂ+g1£ 49 z+g2§ 48 z,tobe
a®0006 22000 a®000
E505 Es05 §s05
calculated for M =5, 10, 15, ..., 50. The resulting probabilities appear in the answer section
inthe text.
2.  P(X£1)= go gl_p (1- p)* = (- p)® +50p(- p)*
p | 01 02 .03 04 .05 .06 07 .08 .09 .10

P(X £l) |.9106 .7358 .5553 .4005 .2794 .1900 .1265 .0827 .0532 .0338

aéOOo aéOOo 2000
3. P(XE£2)=g  2p°(L- p)P+E 2pi(- p)P+g . 2p?(1- p)®
§o5 €15 §25
p | o 0 0 0 0 06 07 08 .09 .10
P(X £2) |.9206 6767 4198 2321 .1183 .0566 .0258 .0113 .0048 .0019

For values of p quite close to 0, the probability of lot acceptance using this plan islarger than
that for the previous plan, whereas for larger p this planislesslikely to result in an “accept
the lot” decision (the dividing point between “close to zero” and “larger p” is someplace
between .01 and .02). Inthis sense, the current planis better.
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—LTPD = E = 3.5» 3.55, which appearsin the P columninthec=5row. Then
AQL .02 P,
n="P 2613 40655131,
o} .02

5 a831
P(X >5 when p =.02) = 1- é?xg(oz (.98)"*** =.0487 » .05
e

5
O

P(X £5 when p =.07) = 31?( 07)*(.93)"*** =.0974 » .10
%]

X=

P(accepting thelot) = P(X; =00r 1) + P(X1 =2, X,=0,1,2,0r 3) + P(X; =3, X, =0, 1, 0r 2)
=P(X1=00r1) +P(X; =2)P(X>=0,1,2,0r3) + P(X; =3)P(X,=0, 1, or 2).
p=.01: =.9106 + (.0756)(.9984) + (.0122)(.9862) = .9981

p=.05: =.2794 + (.2611)(.7604) + (.2199)(.5405) = .5968
p=.10: =.0338+(.0779)(.2503) + (.1386)(.1117) = .0688

P(accepting thelot) = P(X; =00r 1) + P(X; =2, X, =00r 1) + P(X; =3, X, =0) [sincec, =y
—-1=3]=P(X;=00r1) +P(X; = 2)P(X2 Oor1)+P(X1 3)P(X,=0)

- ot 009 X(l-
=a gZ p x Bp p

)100 X

=ggép (- p >§ 0: %o pf.

p=.02 =.7358+(.1858) (.4033) (.0607)(.1326) = .8188
p=.05: =.2794 +(.2611)(.0371) + (.2199)(.0059) = .2904
p=.10: =.0338+(.0779)(.0003) + (.1386)(.0000) = .0038
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37.
a AOQ = pP(A) = p[(1- p)* +50p(1- p)* +1225p>(1- p)*]

p | 01 .02 .03 04 .05 .06 .07 .08 .09 10

AOQ |.010 018 024 027 027 05 02 018 .014 011

b. p=.0447, AOQL = .0447P(A) = .0274
c. ATl =50P(A) + 2000(1 - P(A))

p | 01 02 .03 04 05 .06 .07 .08 .09 10

ATI | 77.3 2021 4186 6799 9451 11888 13936 15593 16861 17816

38. AOQ = pP(A) = p[(l- p)50 +50 p(l- p)4g] . Exercise 32 gives P(A), so multiplying
each entry in the second row by the corresponding entry in the first row gives AOQ:
p | 01 02 .03 04 .05 .06 .07 .08 .09 .10

AOQ |.0091 .0147 .0167 .0160 .0140 .0114 .0089 .0066 .0048 .0034

ATI = 50P(A) + 2000(1 — P(A))
p | o o2 03 04 05 06 07 08 09 10

ATI |224.3 565.2 917.2  1219.0 14552 1629.5 1753.3 1838.7 1896.3 1934.1

diAOQ :di[pP(A) = pl{1- p)*+50p(1- p)49]] =0 givesthe quadratic
p p
equation 2499 p” - 48p - 1=0, fromwhich p = 48%;291 =.0318, and

AOQL =.0318P(A) » .0167 .
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Supplementary Exercises

39.

40.

n=6k=26 SX =10,980, X = 422.31, S5 =402, $=15.4615, Sr, =1074,
F = 41.3077

2
Schart: 15,4615 + S02-4OINL- (952 _ 1o pec 14 0141 5 55,30.37

952
3(.848)(41.31)
2536

Rchart: 41.31+ =41.31+41.44 ,0LCL=0,UCL =8275

X chart basedon S : 422 31 + 3(15.4615)
52+/6

3(41.3077)
2.536V6

=402.42,442.20

X chart based on T : 422.31+ = 402.36,442.26

A cchartisappropriate here. SX =92 so x = 2 _ 333, and
24

X + 3J/X =3.833+ 5.874, giving LCL = 0and UCL = 9.7. Becausexy, = 10> UCL, the
process appears to have been out of control at the time that the 22 plate was obtained.
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: Xi S i
1 50.83 1172 22
2 50.10 854 17
3 50.30 1136 21
4 50.23 1.097 21
5 50.33 .666 13
6 51.20 854 17
7 50.17 416 8
8 50.70 964 18
9 49.93 1.159 21
10 49.97 473 9
1 50.13 .698 9
12 49.33 833 16
13 50.23 .839 15
14 50.33 404 8
15 49.30 .265 5
16 49.90 854 17
17 50.40 .781 14
18 49.37 902 18
19 49.87 643 12
20 50.00 TA 15
21 50.80 2931 5.6
2 5043 971 19

Ss =19.706, $=.8957, SX =1103.85, X = 50.175, a, =.886, fromwhichan s

3(.8957)/1- (.886)*
.886

S,; =2.931>UCL. Since an assignable cause is assumed to have been identified we

eliminate the 21% group. Then S§ =16.775, $=.7998, X =50.145. Theresulting

UCL for an schartis2.0529, and § < 2.0529 for every remainingi. The X chart based on

S haslimits 50.1451@ =48.5851.71. All X; values are between these limits.

8643

chart hasLCL = 0and UCL = .8957 + = 2.3020, and
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42. P =.0608, n=100,s0 UCL = np + 3,/np({l- p) =6.08+ &/6.08i.9392§

=6.08+7.17 =13.25 and LCL =0. All points are between these limits, as was the case
for the p-chart. Thep -chart and np-chart will always giveidentical results since

pl pl

p_

np - 3\/np(l p)<np, >§<np+3\jnp(1- ﬁ)

43.  Sn =4(16)+(3)(4)=76, SnX =32,729.4, X = 430.65,

- 2 -
- S(ni 1)3 _ 27,380.16- 56614 =590.0279, so s=24.2905. For variation:

- sh-1) 76- 20
24.2 1- (.886)°
whenn =3, UCL = 24.2905 + 3 9052386 (886) =24.29+38.14 = 62.43,
3(24.2905)\/1- (.921)°
whenn=4, UCL = 24.2905 + ( 5)921 (921) =24.29+30.82 =55.11.

For location; whenn =3, 430.65+ 47.49 = 383.16,478.14 , and when n = 4,
430.65+ 39.56 = 391.09,470.21.

44,
a. Provided the E()T) m for eachi,

E(w)=aE(X,)+a(t- a)E(X, ,)+..+a(1- a) "E(X,)+({-a)'m
=nfa +a(l-a)+..+a(l-a) ' +(1-a)

=i+ (- a)+..+(t-a)?)+ (- a)|
é(l-a)i ag(l a) +(1-a)

2
—a?fl+C+..+C" 2 wheeC=(1-a))
n

2 1' Ct S 2 . . . .
=a 1 C X— , which gives the desired expression.
- n
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From Example16.8,S =.5 (or S can be used instead). Supposethatweuse @ =.6
(not specified in the problem). Then

W, =m, =40

w, =.6%, +.4m, =.6(40.20)+.4(40) = 40.12

6%, +.4w, =.6(39.72) +.4(40.12) = 39.88

w, = .6%, +.4w, =.6(40.42)+.4(39.88) = 40.20

w, =40.07, w, =40.06, w; =39.88, w, =39.74, w, =40.14,

w, =40.25, w,, =40.00, w;, =40.29, w,, =40.36, w;; =40.51,

w, =40.19, w, =40.21, w,, =40.29

=
I

2
sz=A 61,25 0225,'s , =.1500,
2-6 4
4
52 =0 (1= 6)'],:25 _ ey, s , =.1616,
2-6 4

s,=.1633,s ,=.1636,5, =.1637=5..5 |,
Control limitsare:

Fort= 1, 40+ 3(.1500) = 39.55,40.45
Fort=2, 40+ 3(.1616) = 39.52,40.48

Fort=3, 40+ 3(.1633) = 39.51,40.49.
Theselast limitsare also thelimitsfort =4, ..., 16.

Because w3 = 40.51 > 40.49 = UCL, an out-of-control signal is generated.
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