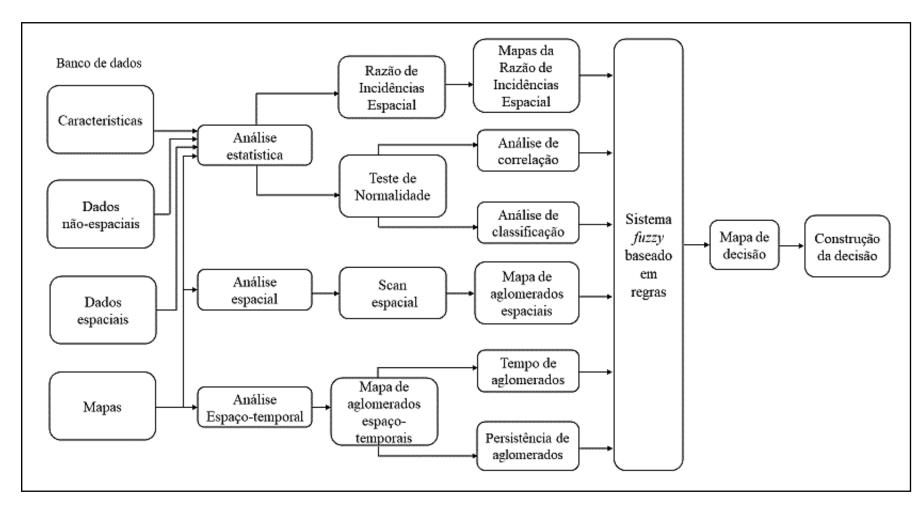
UNIVERSIDADE FEDERAL DA PARAÍBA III WORKSHOP DE SAÚDE PÚBLICA- MODELAGEM E TOMADA DE DECISÃO EM TEMPOS DE COVID-19

Tomada de decisão em meio à pandemia de COVID-19 usando análise espacial e inteligência artificial

Dra Luciana Moura Mendes de Lima

INTRODUÇÃO

- Necessidades de informações dos gestores em saúde: distribuição espacial (KATO; VIEIRA; FACHEL, 2009)
- Sistemas de Apoio à Decisão (*Decision Support Systems* DSS) (Sugumaran, Degroote, 2011; Moraes, Melo, 2017)
- Sistema de Apoio à Decisão Espacial (Spatial Decision Support Systems-SDSS)

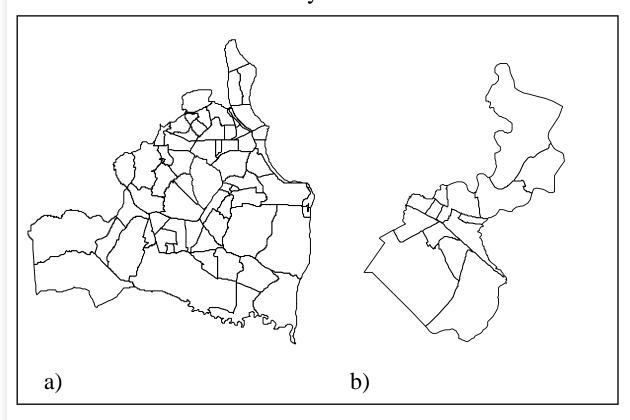

Área da saúde - Problemas epidemiológicos

(DELMELLE et al., 2011; KELLY et al., 2011; BURDZIEJ, 2012; MORAES, NOGUEIRA, SOUSA, 2014; WANGDI et al. 2016)

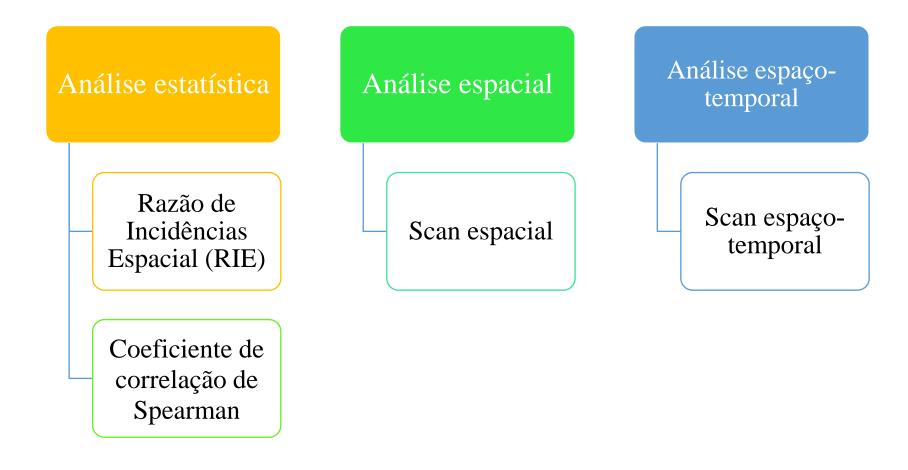
• Arquitetura do SDSS desenvolvida por Moraes, Nogueira e Sousa (2014).

REFERENCIAL METODOLÓGICO

Figura 1- Arquitetura do SDSS de Moraes, Nogueira e Sousa (2014)



Fonte: Adaptado de Moraes, Nogueira e Sousa (2014)


REFERENCIAL METODOLÓGICO

- Casos de internação hospitalar por COVID no estado da Paraíba;
- Período de março a outubro de 2020, semana epidemiológica 12 a 42.

Figura 2 - Mapas dos municípios: a) João Pessoa; b) Bayeux

REFERENCIAL METODOLÓGICO

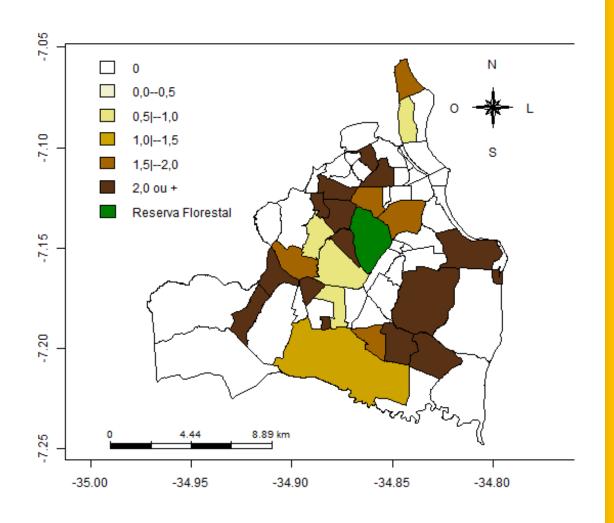

- Planilha eletrônica e analisados no software R;
- Análise espaço-temporal: software SaTScan.

Tabela 1 - Variáveis linguísticas, termos linguísticos e domínio utilizado no SDSS referente aos casos de internação hospitalar por COVID, ano 2020

Variável linguística de entrada	Explanação da variável linguística	Termos linguísticos	Domínio
		Muito Alta	1.99, 2.08, 32, 34
Razão de Incidências Espacial (RIE)		Alta	1.49, 1.58, 1.99, 2.08
		Média	0.99, 1.08, 1.49, 1.58
		Baixa	0.49, 0.58, 0.99, 1.08
		Muito Baixa	-1, 0, 0.49, 0.58
Coeficiente de correlação de Spearman		Alta positiva	0.658, 0.795, 0.995, 1.5
		Moderada positiva	0.185, 0.34, 0.6382, 0.812
		Fraca	-0.331, -0.178, 0.176, 0.35
		Moderada negativa	-0.803, -0.666, -0.3422, -0.18
		Alta negativa	-1.5, -1, -0.8, -0.68
Scan espacial	Bairro com presença ou ausência de aglomerado espacial	Com Scan	0.95, 1, 1.05
		Sem Scan	-0.05, 0, 0.05
Scan espaço-temporal	Bairro com presença ou ausência de aglomerado espaço-temporal	Com Scan	0.95, 1, 1.05
		Sem Scan	-0.05, 0, 0.05
Tempo do aglomerado espaço- temporal	Período (semana epidemiológica) em que o bairro apresentou aglomerado espaço-temporal significativo	Muito recente	33.5, 36, 41, 45
			20, 22.4, 33.5, 36
		Não recente	04, 13, 20, 22.4
Persistência do aglomerado espaço- temporal	Tempo de persistência em que o bairro foi um aglomerado espaço-temporal significativo	Sem persistência	-0.9965, 0.0035, 0.8896
		1 semana	0.106, 1, 1.892
		2 semanas	1.115, 2, 2.91
		3 semanas	2.11, 3, 3.85
		4 semanas	3.11, 4, 4.92
		5 ou mais semanas	4.115, 5, 5.91
Variável linguística de saída			
Níveis de prioridade dos bairros	para intervenção dos bairros	Prioritário	0.721, 0.9, 1.03, 1.3
		Tendência a prioritário	0.397, 0.6, 0.7, 0.9233
		Tendência a não prioritário	0.07855, 0.301, 0.401, 0.602
		Não prioritário	-0.3, -0.0333, 0.1, 0.2855

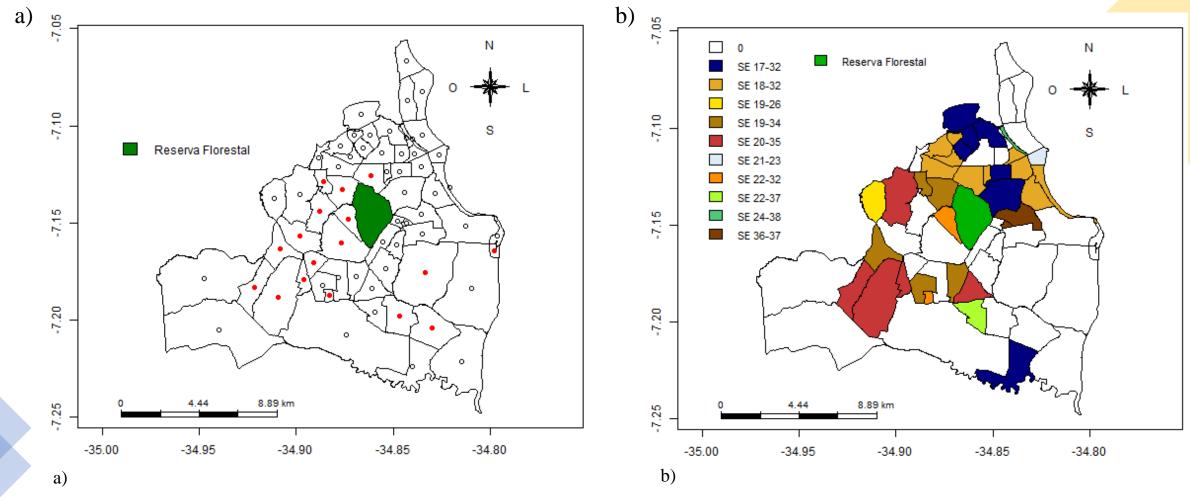

Fonte: Elaboração própria

Figura 3- Mapa da RIE referente aos casos de internação hospitalar por COVID na semana epidemiológica 41, no município de João Pessoa, ano de 2020

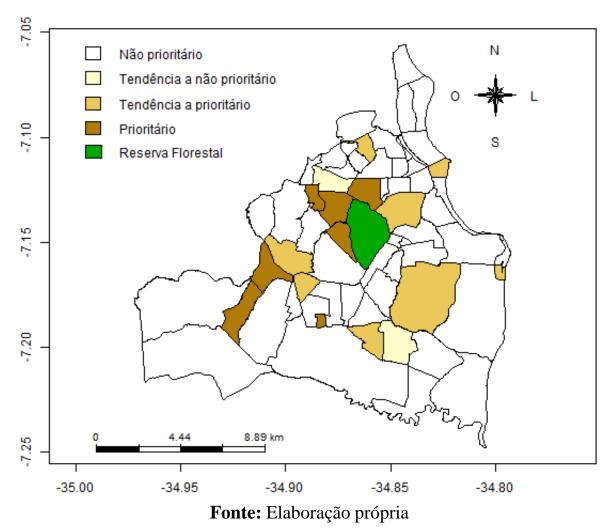
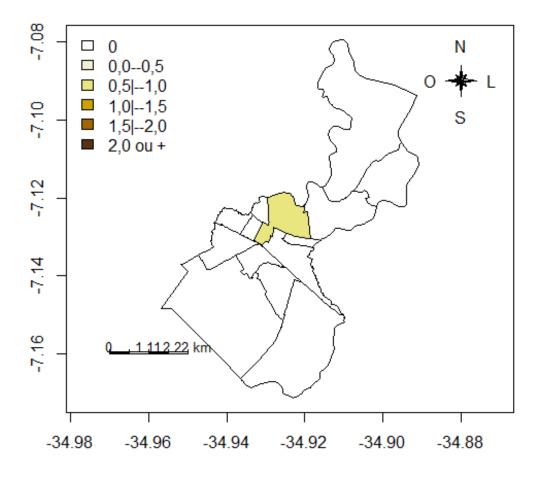

Fonte: Elaboração própria

Figura 4- Casos de internação hospitalar por COVID, no município de João Pessoa, ano de 2020: a) Scan espaçolemporal



Fonte: Elaboração própria Fonte: Elaboração própria

Figura 5- Mapa de decisão final referente aos casos de internação hospitalar por COVID, no município de João Pessoa, ano de 2020

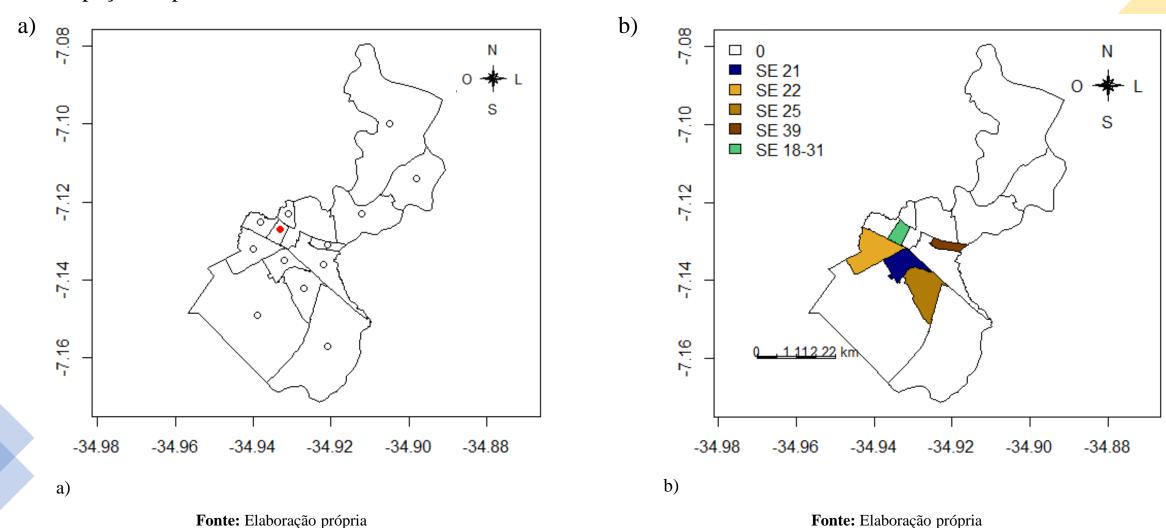
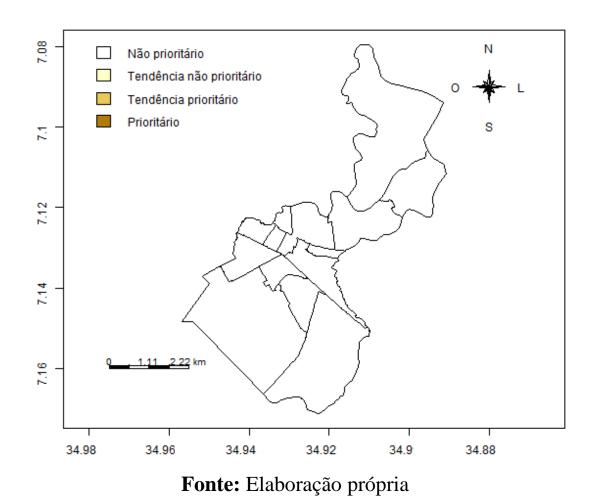


Figura 6- Mapa da RIE referente aos casos de internação hospitalar por COVID na semana epidemiológica 41, no município de Bayeux, ano de 2020

Fonte: Elaboração própria


Figura 7- Casos de internação hospitalar por COVID, no município de Bayeux, ano de 2020: a) Scan espaçolial; b) Scan espaço-temporal

TOMADA DE DECISÃO EM MEIO À PANDEMIA DE COVID-19 USANDO ANÁLISE ESPACIAL E INTELIGÊNCIA ARTIFICIAL

RESULTADOS E DISCUSSÃO

Figura 8- Mapa de decisão final referente aos casos de internação hospitalar por COVID, no município de Bayeux, ano de 2020

CONSIDERAÇÕES FINAIS

- Ferramenta de suporte à decisão;
- Auxiliar o gestor a tomar uma decisão de maneira coerente e assertiva e traçar estratégias de intervenção;
- Fácil interpretação;
- Contribuição adaptativa;

REFERÊNCIAS BIBLIOGRÁFICAS

ARMSTRONG, M.P.; DENSHAM, P.J. Database organization strategies for spatial decision support systems. International Journal of Geographical Information Systems, v. 4, n. 1, p. 3-20, 1990

BARRETO, M.L. Por uma epidemiologia da saúde coletiva. Revista Brasileira de Epidemiologia, v. 1, p. 123-125, 1998.

BURDZIEJ, J. A Web-based spatial decision support system for accessibility analysis-concepts and methods. **Applied Geomatics**, v.4, n.2, p.75-84, 2012.

DELMELLE, E.; DELMELLE, E.C.; CASAS, I.; BARTO, T. HELP: a GIS-based health exploratory analysis tool for practitioners. **Applied Spatial Analysis and Policy**, v.4, n.2, p.113-137, 2011.

LIMA, L.M.M.; SÁ, L.R.; MACAMBIRA, A.F.U.; NOGUEIRA, J.A.; VIANNA, R.P.T.; MORAES, R.M. A new combination rule for Spatial Decision Support Systems for epidemiology. **International Journal of Health Geographics**, v. 18, n.1. p.1-10, 2019b. DOI: 10.1186/s12942-019-0187-7.

MARSH, K. et al. (Ed.). Multi-Criteria Decision Analysis to Support Healthcare Decisions. Springer, 2017.

MORAES, R. M.; NOGUEIRA, J. A.; SOUSA, A.C.A. A new architecture for a spatio-temporal decision support system for epidemiological purposes. In: **Decision Making and Soft Computing: Proceedings of the 11th International-FLINS Conference**. João Pessoa, 2014.

WANGDI, K.; BANWELL, C.; GATTON, M.L.; KELLY, G.C.; NAMGAY, R.; CLEMENTS, A.C. Development and evaluation of a spatial decision support system for malaria elimination in Bhutan. **Malaria jornal**, v.15, n.1, p.1-13, 2016.

• • •

UNIVERSIDADE FEDERAL DA PARAÍBA III WORKSHOP DE SAÚDE PÚBLICA MODELAGEM E TOMADA DE DECISÃO EM TEMPOS DE COVID-19

Tomada de decisão em meio à pandemia de COVID-19 usando análise espacial e inteligência artificial

E-mail: lumouramendes@gmail.com