
CybHaptics: A Class for Haptics Support in Virtual Reality
Systems

Daniel F. L. Souza1, Ronei M. Moraes2 and Liliane S. Machado1

1 Departament of Informatics and 2 Departament of Statistics
Universidade Federal da Paraíba - Cidade Universitária s/n – 58051-900 – João Pessoa/PB – Brazil

danieltidus@gmail.com, ronei@de.ufpb.br, liliane@di.ufpb.br

ABSTRACT
Haptics have been largely used in VR environments, especially in
training systems in which user dexterity is a mandatory
requirement to determine performance. Besides that, through
tactile object exploration, applications can offer a high level of
interaction to users. This work presents CybHaptics, a set of
classes for the CyberMed, a system for fast development of
medical simulators. The goal of CybHaptics classes is to allow the
use of haptics facilities in VR applications developed with the
CyberMed system. These classes provide interfaces, support for
several haptic devices and run in a synchronized way with other
tasks, as visualization, deformation and assessment of training, in
the final application.

Keywords
Haptics, VR Systems, Medical Training.

1. INTRODUCTION
VR applications have incorporated haptics in order to provide
touch sensation for users [4]. These applications present specific
requirements, as the simulation of procedures which require hand
dexterity. With this feature is possible to provide more immersion
to users and touch can be associated to visualization [2]. In
medicine, several applications have been developed for training,
assistance and educational purposes. These applications make
computational creations (copies) of real situations in which the
user can explore the environment as he/she would do in the real
world.

The CyberMed system has been developed to facilitate the process
of development of VR simulators for medical purposes [4]. It is
composed by a set of classes which provides several facilities and
support for several devices. This feature gives to the programmer
a high level system which does not demand specific knowledge
about devices, their programming API and specific algorithms
related to VR development.

The goal of this paper is to present CybHaptics, the haptic
subsystem of the CyberMed. Thus, its conception and
development will be presented as well as the results obtained after
its incorporation to the CyberMed.

2. HAPTIC SYSTEMS
When associated to visual displays, haptic systems greatly
improve the realism of VR based simulations [1]. In this context,

touch is used to explore objects features, as shape, roughness and
texture [3]. The difference between haptic interaction and other
interaction devices used in VR systems is the bi-directional
communication feature. It gives to a single interface (device) the
capability of sending and receiving information [2]. The haptic
interaction happens through haptic systems, composed by the pair:
device and haptic rendering routines. Most haptic devices
available are sold with a control software or API. The goal of
them is to provide haptic rendering techniques through a high-
level programming tool for the device.

Haptic rendering can be defined as the process where haptic
control routines calculate the haptic modification of a haptic
scene, update this scene and send these modifications to the user
in real-time [3]. Most haptic software implement a single
interaction point to represent the haptic device and the contact is
verified only for this point. This technique will also be used in
this work for the implementation of CybHaptics.

There are several material properties which can be simulated by
haptic devices. They can be divided in two groups: surface
properties, as static and dynamic friction, stiffness and textures;
and environment properties, as viscosity, constant forces and
gravity.

3. THE CYBHAPTICS CLASSES
The CybHaptics is a set of classes dedicated to deal with haptics
in the CyberMed system. Its goal is to provide an intuitive and
abstract access for the integration of haptics in applications
developed with CyberMed by the creation, support and
management of haptic rendering tasks. In this case, the
CybHaptics can be used in an independent way to create haptic
scenes or can be used with other CyberMed classes to compose a
VR system for medical simulation. This feature garantees the
performance of the haptic rendering and its complete
synchronization with other tasks (view, assess, etc).
Scene and objects topologies used by CybHaptics are acquired
from CybParameters, which contains a copy of all data stored in
the data structure OF. This copy is important because the
CyberMed allows visual deformation and the topology of an
object cannot change for the haptic rendering routines. This will
happen only when an object was permanently deformed. Then, the
CybParameters will update the topology from OF and the
CybHaptics will start to deal with this data into the haptic
rendering. Figure 1 presents the CybHaptics and its relationship
with other CyberMed components.

To rendering virtual objects, the CybHaptics provide several
methods to individual creation, enabling and rendering of them.
Then, the user of the classes can manipulate individually an object
and enable or disable it in the haptic rendering.
The calibration of haptic devices is possible through several
methods and engines which monitor their activities. In this case,
the user of a final application can be informed about the necessity
of calibration of the device. On the other hand, the update of
haptic scenes is performed through update routines, responsible
by the synchronization between visual and haptic scenes. This
feature offers high-level dynamic control in the construction of
applications with direct manipulation of objects.

Figure 1. CybHaptics and its integration to the CyberMed
system.

The attribution of material properties to objects and to the
environment is also supported by CybHaptics. This is one of its
main features, mostly because the development of training
applications uses several and different properties to haptically
describe objects. Examples of these kinds of application are
simulations which allow body organs palpation or the navigation
inside body structures. The process of attribution of a material
property to an object is similar to the creation of a haptic object: it
is necessary to create the property, enable it and after apply it in
the object. This allows the individual attribution of properties for
each object of the haptic scene. However, the environment or
parts of it can demand haptic properties. This happen when is
necessary to simulate material properties of a region inside some
object. For this case, CybHaptics also offers methods to help the
definition of environment properties.

4. DEVELOPMENT
The CybHaptics was developed to provide a high-level access to
haptic routines, as device maintenance and haptic rendering.
However, its development is flexible enough to allow low-level
access for expert programmers: CybHaptics has an abstract
implementation which presents features common to most of the
haptic devices. To support a specific device, a programmer can
inherit these features and implement them as he/she wants (Figure
2). In fact, CybHaptics hides the implementation of several classes
used to support haptic devices and their functions.
In a depth view, new devices can be added to the CybHaptics by
its inheritance and the implementation of the functions needed to
a specific device. This implementation will not only allow the
integration of the device into CybHaptics, but also to the
CyberMed and all its functionalities. Figure 3 shows how this
integration can be done for several haptic devices: a class
HapticDeviceInterface must inherit the abstract class CybHaptics
and provide and interface between several implementations and

the CyberMed. Some functionalities defined by CybHaptics are:
start the haptic rendering, get device position, get device rotation,
get force applied, update haptic scene, get transformation matrix
and idle. The last one is used to verify haptic rendering errors
and/or calibration status.
The integration described below was used to provide support for
the haptic devices of the Phantom family. Then, the classes used
inherited CybHaptics features and implemented methods
necessary to support these devices. The Figure 3 shows the
diagram of classes used to integrate Phantom devices to the
CyberMed.

Figure 2. Integration of several devices and their relationship
in CybHaptics.

Figure 3. Classes to support Phantom devices in CybHaptics.

The CybPhatom class implements low-level access to the haptic
device and uses the API provided by the device manufacturer. The
haptic rendering routines and their management system are in this
class. All information necessary for these routines is in the
CybParameters class and will feed the haptic scene. The same
CybParameters feed the visual scene.
A class CybOpenHPhantom inherits the characteristics of the
abstract class CybHaptics and implements them to integrate the
haptic device to the system. The CybOpenHPhantom provides a
high-level control of the device routines and allows programmers
an easy use of the device functions. This fact facilitates the use
and programming of the haptic device and does not require
previous experience or depth knowledge of the device API.
Basically, the CybOpenHPhantom provides a façade between the
CybPhantom and the complete system, at the same time it
implements the CybPhantom features necessary to integrate the
device to the system. Then, expert programmers which want to
have a direct manipulation of the haptic device can override the
CybOpenHPhantom and implement the functions how they desire.
The use of project pattern singleton is other interesting feature of
the CybOpenHPhantom. It allow to the programmer the access to
all functionalities through a single instance of the class. It avoids
the creation of multiple objects to deal with the device

functionalities, which could generate errors in the final
application. Both CybPhantom and CybOpenHPhantom can be
used by programmers who want to use Phantom haptic devices in
their applications. The only experience necessary to use the high-
level functions of CybHaptics is the knowledge about the
creation of haptic scenes, what is similar to the process of creation
of graphic scenes.
The programming language used to develop CybHaptics classes
was C++. To integrate Phantom haptic devices to these classes
was used the OpenHaptics API, provided by Phantom
manufacturers. The developing platform was the Linux, Fedora
distribution. The classes can be used with any Linux distribution
and is independent of window system.

5. RESULTS
Nowadays, CybHaptics offers all the features described in section
3. It is completely integrated to the CyberMed system and is
synchronized with visualization and assessment classes. This way,
an application developed with the CyberMed can use the only
CybHaptics in a haptic display application or can use it with other
CyberMed classes to design more complex applications. In the
last case, the application can integrate visualization, collision
detection, deformation and assessment tasks, all synchronized and
running in real time. The utilization of all potentialities of
CyberMed will depends on the hardware used to run the final
application.
The code below presents an example of application, which
integrates several layers for a visual and haptic scene in medical
training simulation, developed with the CyberMed. The goal of
the application is to provide training of bone marrow harvest and
includes three stages: visualization, palpation of the body and
collect of material inside the body with a needle. This application
provides visualization and touch.

#include "Cybermed/cybOpenHPhantom.h"
#include "Cybermed/cyb.h"

int main(int argc, char** argv)
{
 int numLayer = 5;
 char *arqname[30] = {"1.wrl","2.wrl","3.wrl","4.wrl", "5.wrl"};
 ofMesh<cybTraits> malha[numLayer];
 CybDataObtainer<cybTraits> data(numLayer);
 ofWrlReader<cybTraits> entrada;
 CybParameters cybCore;
 CybApplication view;

 // set haptic material properties for the skin
 interator.hapticDevice.createHapticLayers(0,true);
 interator.hapticDevice.createMaterialPropertyContext(numLayer, true);
 interator.hapticDevice.setMaterialPropertyValue(0, POPTHROUGH, 1.0f);
 interator.hapticDevice.setMaterialFace(0, POPTHROUGH, FRONT);
 interator.hapticDevice.setMaterialPropertyValue(0, DYNAMIC_FRICTION, 0.6f);
 interator.hapticDevice.setMaterialFace(0, DYNAMIC_FRICTION, FRONT);

 // set haptic material properties for the bone
 interator.hapticDevice.createHapticLayers(1,true);
 ...
 interator.hapticDevice.enableHapticMaterialProperty();

 for(int i=0; i<numLayer; i++) {
entrada.read(&malha[i], arqName[i]);
data.readColor(nomeArquivo[i], i);

 }
 data.startParameters(numLayer, malha, &cybCore);
 view.setWindowName(nameWindow);
 // set object as interator
 interator.setObjectType(0, -0.020913, 0.078050, -10.034132);
 …
 view.init();
}

Several tests were performed with different models. The goal was
to observe the refresh rate of the haptic rendering tasks. To

provide a good simualtion, the refresh rate should be around 1000
Hz. This rate offers a complete absence of delays in the haptic
display. Table I shows the refresh rate of the haptic scene
observed during the interation with different models. The values
were collected in an application with visual and haptic display.
The tests were performed in a Athlon XP 2600 processor, in a PC
with 1Gb RAM, 256Mb graphic card, in a Linux Fedora Core 4
32 bits operational system.

Table I. Refresh rate of the haptic scene whit different models.

Model Number of
Vertices

Number of
Triangles

Refresh rate of haptic
scene (in Hertz)

Sphere 993 1983 ~2333

Skin 3367 5534 ~2000

Bone Marrow 8036 16072 ~1550

Illiac Bone 12070 24164 ~1330

6. CONCLUSIONS
This paper presented CybHaptics, a set of classes developed for
the CyberMed system. CybHaptics provides interfaces, support
for several haptic devices and is completely synchronized with
other tasks in a VR system, as visualization, deformation and
assessment of training.
The design of the classes allows a high-level use of haptic
functions for programmers and leaves the details of haptic
rendering implementations internal to the system. However, low-
level access to haptic functions are also available and can be used
by expert programmers. This feature of the CybHaptics gives
flexibility to the development of applications which integrates
haptic functionalities.
At this moment CybHaptics is completely integrated to the
CyberMed system with support to the haptic devices of the
Phantom family. Due to the design of the classes, the support of
new devices can be easily incorporated. New releases of the
classes intend to include the support of new haptic systems and
the simultaneous use of several haptic devices in an application.

7. ACKNOWLEDGMENTS
This work is supported by Brazilian Council for Scientific and
Technological Development, (CNPq CT-INFO 506480/2004-6)
and Brazilian Research and Projects Financing, (FINEP 01-04-
1054-000).

8. REFERENCES
[1] Cagatay, B., Haptic Rendering, Tutorial online:
http://network.ku.edu.tr/~cbasdogan/tutorials/haptic_tutorial.html.
Access in October, 2005.
[2] Salisbury, K., Conti, F., Barbagli, F. Haptic Rendering:
Introductory Concepts. IEEE CG&A, April, 2004, 24-32.
[3] Salisbury, K. et al., Haptic Rendering: Programming Touch
Interaction with Virtual Objects. Proc. ACM 1995 Symposium on
Interactive 3D Graphics, Monterey CA, April, 1995, 146-151.
[4] Sherman, W., R. Understanding Virtual Reality: Interface,
Application, and Design, Morgan Kaufmann Pub, CA, 2003.

